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£ The term “Quality”
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® Totality of characteristics of an entity to bear on

its ability to satisfy stated and implied needs
» EN ISO 8402

@ In the lab: the benefit your customer has from
your test result

® the quality system is the organisation you put up
in order to deliver results that satisfy these
specific requirements



@ Starting-points of ISO 9000

»IS0 9000 standards set the basic rules for quality
systems - from design, through manufacturing to
delivery- whatever product or service

»in fact a set of “‘good practice’ rules for
manufacturing a product or delivering a service

»to achieve customer satisfaction by preventing
deviations in all phases of the process

>not a technical standard!

M For testing laboratories
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® By analogy with the standard ISO 9000, a
standard is developed specifically for routine
testing laboratories

»EN 45001 or ISO guide 25

»but, ISO 17025 1s coming which guarantees full
relevant compliance with ISO 9001




) Accreditation vs. Certification
Ke (situation in Belgium.. )
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® Accreditation according to ISO 17025 or EN
45001 involves the assessment and periodic
audit of the adequacy of the quality system by
a third party “an Accreditation Body”

® An accredited lab satisfies the lab standard
which lays down the quality assurance
requirement and the technical competence;
the accreditation guarantees also that the
result is assured (within the measurement
uncertainty that you define yourself)

5 What’s the difference?
M (situation in Belgium .. .)
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® When you are looking e.g. for a competent
calibrationlab you will find those that are certified
~and those that are accredited;

® The certified lab will guarantee you that the
calibration will be carried out conform to a quality
system and will be well documented, but it does
not imply that the lab has the technical
competence to perform such a calibration
(qualified personnel, traceable instruments,
calculated uncertainty, ....)




2 Iltustration of an accredited method :
Ke Isotopic Analysis + Isotopic Dilution of Pu by TIMS
ilsboiitoglieroe i

® Full description of the method in working instructions
(from reception of the sample up to final result).

= the so feared paperwork...
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N Validation study:

Ke the ‘business card” of your analysis
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® validation of analytical instruments and procedures in order to proof the
technical competence and (as a result) the claimed “quality”.
® validation parameters: repeatability, reproducibility, accuracy,
specificity, detection limits, linearity, sensifivity,...
@ other tests in this validation context :
» comparison of the results of both our TIMS instruments
» comparison of the results of both our qualified technicians
» regular quality checks of all labware
(balances, pipettes, volumetric flasks, ...)



K’. Accuracy in MS : mass bias
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@® Accuracy is tested by measuring Certified Reference Matetials (CRM’s)

® In MS, mass bias induces differences in measured isotopic ratio’s versus
certified isotopic ratio’s. The linear law to correct for this mass
discrimination states :

Rfr/RmEC?S:]‘_I_Am.B

with: R =ratio of (isotope m, / isotope m,}
tr = true, meas = measured
Am = difference in atomic mass units = m, - m,
B = mass bias per atomic mass unit
® The mass bias routinely applied, is based on the measured ratio’s
(Pu-240/Pu-239) and (Pu-242/Pu-239) of CRM NBS-947 (n=37).
Result : B = 0.00100 +/- 0.00022 (1s)

2 Validation of TIMS for the isotopic analysis of U
Ko and Pu (SCK+CEN document MT RA BN/901)
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"the uncertainty on a measurement of the isotopic composition of an
element by TIMS is estimated at the 95% confidence level (25) to be :

T10% at the abundancy level of  0.003-0.01%
Ts59 at the abundancy level of  0.01 -0.05 %
2% at the abundancy level of  005-035%
+*05% at the abundancy levelof  0.5-3%
£0.25% at the abundancy levelof 3-10%

£0.10.2% at the abundancy level of > 10%"



Quality Contro] : Control Chart TIMS
measurement of an isotopic reference standard (e.g. NBS947)
on each barrel; control of Pu(240/239) neasured / P(240/23 9 0nisicq
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, Traceability of results
A
K+ back to recognised standards
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e.g. the spike used in Isotopic Dilution measurements :

»the making of the spike solution is documented
(composition is certified; concentration is theoretically
known and experimentally checked)

>the management of the spike solution is documented
»the concentration is regularly checked by spiking with
another CRM.
Other examples :
»standard weights to calibrate balances (even in hotcell)
»calibration of thermometers
> ...




) Same ‘philosophy’ applied to
@ burnup determination (1):
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® Burnup FIMA (Fissions per Initial Metal Atom)

ZOAN) g0 BN
Z(No)  E(Ne)+Z(AN)

at Y% FIMA =

> (AN) = number of heavy atoms fissioned (= fissions)
> (No) = number of heavy atoms initially present

> (Ne) = number of heavy atoms at end of irradiation

> Same ‘philosophy’ applied to
@ burnup determination (2):

® Z(AN) = 100 . #at (Nd-148) / MWFY (Nd-148)
>#at (Nd-148) : total number of Nd-148 nuclide
#determined by TIMS (IA+ID)
#traceable to certified standard
»MWFY (Nd-148) : Mean Weight Fission Yield of Nd-148
#is calculated from literature data (fission yields)
+ measurement of Nd-148/Nd-150 ratio (TIMS IA)
+ measurement of Pu-241/Pu-239 ratio (TIMS IA)
(assumption : all fissions are from U-235, Pu-239 and Pu-241)



, Same ‘philosophy’ applied to
K burnup determination (3):
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® X(ANe) = #at (U)o, + #at (Pu)p, + #at (TPu)gqp
»#at (U)gqy, : total number of U-atoms at end of irradiation
4determined by TIMS IA+ID
#traceable to certified standard
»>#at (Pu)go, : total number of Pu-atoms at end of irradiation
4determined by TIMS IA+ID
#traceable to certified standard
>#at (TPu)pop : total number of Np + Am + Cm atoms at
end of irradiation
#determined by TIMS, a- and/or y~spectrometry
#all results traceable to certified standards

Same ‘philosophy’ applied to
@ burnup determination (4):
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With uncertainties of
0.3 -0.5 % for Z(Ne) and
2 - 4 % for Z(AN)
an overall uncertainty in the burnup determination can
be estimated to be 2.5 - 4 %.

Remark : main contribution comes from the MWFY ...



