THE NEW GAMMA-SCANNING AND TOMOGRAPHY SYSTEM IN THE HOT CELL LABORATORY OF THE FORSCHUNGSZENTRUM JÜLICH

by

Winfried Kühnlein Forschungszentrum Jülich, Germany

European Working Group "Hot Laboratories and Remote Handling" September 27 – 29, 2000 PSI, Villigen, Switzerland

Forschungszentrum Jülich

 (ω)

OVERVIEW

- 1. Introduction
- The new gamma-scanning system (hardware) <u>5</u>.
- The automatic controlling system (software) $\dot{\mathbf{c}}$
- 4. Some results
- 5. Conclusions

 tomography for density and activity distribution inside of the sample Old gamma-scanning system: 3-axis (2 linear and 1 rotation) with fixed distance between sample and gamma-detector, stepping motors too weak to handle heavy samples, frequent repairs caused by non-capsulated, oxidized end-switches, computer controlling system supports only 1 linear and rotational axis as necessary for tomography (the system was mainly used for this purpose) 	Non-destructive radioactive measurement techniques:
Non-destructive radioactive measurement techniques: gamma-scanning for activity distribution of the sample,	

0

9

ţ

.

Hot Cell Meeting 27. - 29.09.2000, PSI, Villigen, Schweiz

Forschungszentrum Jülich

THE NEW GAMMA-SCANNING DEVICE (SCHEMATIC)

Forschungszentrum Jülich

	CAPABILITIES OF THE GAMMA-SCANNING DEVICE
•	Linear scans 200 mm in horizontal and 300 mm in vertical direction
٠	Rotational scans 360 degree
	2D-scans 200 mm x 300 mm
9	Cylindrical scans
9	Transmission and emission tomography for measurement of density and activity distribution inside of samples
	Third linear axis for variation of the distance between sample and gamma-detector
	Hot Cell Meeting 27 29.09.2000, PSI, Villigen, Schweiz Forschungszentrum Jüllich

. ,

THE GAMMA-SCANNING DEVICE WITH DUMMY SAMPLE

View from backside into the cell

View through the cell window

Forschungszentrum Jülich

COMPONENTS OF THE GAMMA-SCANNING SYSTEM

- 3 linear axis driven by powerful stepping motors with magnetic brakes for the vertical and the rotational axis connected to controlling units with intelligent interface cards
- Different collimators with varying geometries (slit or cylindrical holes of different diameters) made from brass or densimet a tungsten alloy
- Different sample holders easy to mount and to dismount
- A laser pointer for positioning of the sample from outside through the collimator hole
- A gamma-detector outside the cell connected to the nuclear electronic equipment
- A PC-based control and data acquisition system

Forschungszentrum Jülich

Forschungszentrum Jülich

angular mounting parts

THE PC-BASED CONTROL AND DATA ACQUISITION SOFTWARE

Consist of

- Gamma-counting software from EG&G ORTEC which can control measuring cycles by reading of command files
- Software to control the different axis of the scan device interactivly and to position the sample correctly for measurement
- Software to store other necessary input data for the automatic run of the gamma-scan
- Software to control and run the actual measurement and store the acquired and evaluated data in files of the hard disk

MAIN IMPROVEMENTS OF THE NEW SOFTWARE SYSTEM

- Extension to control more than 2 linear axis (2D-scans and cylindrical scans)
- More reliability by transferring the data of the sample position back to the controlling program of the PC for comparison
- Status of the scan is shown by a bar graph
- Restart option in case of an interrupt (helpful due to the fact that the scan mostly takes several days)
- Export of the scan data in a format compatible with popular spreadsheet (i.e. EXCEL)

GAMMA-SCANNING RESULTS

ISIS target window 1 - 2D-plot of activity distribution of annihilation peak (511 keV)

Forschungszentrum Jülich

GAMMA-SCANNING RESULTS (CONTINUED)

Forschungszentrum Jülich

GAMMA-SCANNING RESULTS (CONTINUED)

PSI window 2 - 2D-plot of activity distribution of annihilation peak (511 keV)

Hot Cell Meeting 27. - 29.09.2000, PSI, Villigen, Schweiz

Forschungszentrum Jülich

GAMMA-SCANNING RESULTS (CONTINUED)

LANL water degrader part B $\,$ - 2D-plot of activity distribution of Mn-54 $\,$

RESULTS – TOMOGRAPHY OF IRRADIATED GRAPHITE BODY

. . .

(measured with the old device)

CONCLUSIONS

The new gamma-scanning device has:

- More flexibility with more features of sample holders and measuring modes
- More reliability with powerful motors, capsulated end-switches and magnetic brakes
- A better handling and mounting of the samples by using a third linear axis
- A better data controlling and processing system
- Proven itself on measuring results shown before

