Visual Inspection and Nuclide Identification System for High level radwaste
Waste Storage Facility

The waste storage facility (WSF) is a building, used for the interim storage of highlevel and mediumlevel radwaste. The radwaste is stored in drums in special basements, covered by thick steel and concrete leads. After a maximum period of five years, the radwaste is transported to the central organization for radioactive waste (COVRA) for final disposal. At the moment a clean-up programme has started which aim is to reduce and then to move the highlevel radwaste of the Netherlands Energy Foundation ECN to COVRA.

To have insight in the costs of clean-up of the WSF it is necessary to know the composition, filling rate and weight of the contents as well as the condition of the drums with highlevel radwaste stored in the WSF. For this purpose the so called ‘measuring and inspection campaign’ has been set up. With the obtained information of this campaign strategies, for reduction of the volume of the highlevel radwaste can be made.

For the measuring and inspection campaign a special device, the so called VINISH, was built. VINISH is a Visual Inspection and Nuclide Identification System for High level radwaste. It is equipped as follows:

- a CCD-camera and halogen lamps for visual inspection,
- a high purity germanium crystal for gamma spectrometry,
- 4 meters for doserate measurements,
- a collimator system for reducing the doserate on the germanium crystal,
- a rotation system which rotates the waste drums during the measurements and visual inspection.

The doserate measurements, gamma spectrometry and visual inspection are performed at the same time. The rotation of the waste drums is continuous during these operations. A waste drum is examined at 3 or 4 consecutive positions depending on the height of the waste drum.
Herman Buurveld

Nuclear Research and consultancy Group

unit Irradiation Services Petten, the Netherlands

url: www.nrg-nl.com
email: buurveld@nrg-nl.com
Given:

1600 drums filled with high level radwaste.

Request:

γ-contents,
weight,
dose rate at surface,
condition,
filling grade.
Answer:

Visual Inspection and Nuclide Identification System for High level radwaste

definition: high level radwaste = HAVA
HAVA > 20 mSv/h at surface
Why?

1 nuclear part of ECN split off: new company NRG.

NRG inherits ECN HAVA, ECN pays inheritance: clean-up of ECN HAVA.

question: costs for clean-up?
HABOG at COVRA site.

ORDER: within 3 years after HABOG completion, all ECN HAVA -> COVRA.

question:
1600 drums of HAVA at NRG -> 500 positions for HAVA drums at HABOG?
VINISH

Visual Inspection and Nuclide Indentification System for High level radwaste
Visual inspection
 CCD-camera → drum surface + identification (Cs or Pb glass shielded)
 PAL-monitors
 halogen lamps
 lead glass

Nuclide identification
 germanium crystal
 tungsten collimators

Additional
 dose rate meters
 container + weighbeam
The work

storage,
transport,
examinations.

Storage

pipes, plugs, hatches.
HAVA drums stored in pipes,
Pipes covered by plugs or hatches.
lead coffin
5675 kg

301 vertical tubes
30 cm diameter

concrete
waggon

measuring ring

waste container

160 cm
70 cm
55 cm
432 cm
5 cm
40 cm
Transport

 crane: container, plugs
 container: HAVA drums,
 five finger gripper.

 wagon: lifts hatches,
 shielding of gammas.
Examinations

weight:
 weight of 1600 drums,
 to be reduced to 500 drums
 of 60 kg each

dose rate at surface:
 20 mSv/h < 1600 drums < 20 Sv/h
 finally 500 drums with 6 Sv/h each.

dose rate \leq 20 \text{ mSv/h}: \text{HAVA} \rightarrow \text{MAVA}
condition:

HAVA drum rotates,
operator observes the surface of
the drum on the monitor.

\[\text{PVC} + \gamma \rightarrow \text{HCl} \]

HCl corrodes the drums
γ-contents:
3 or 4 measurements per drum
decay calculations
dose rate estimations

filling grade:
evaluation of gamma spectroscopy.
80% filling grade:
1600 x 0.8 = 1280 !
computerization:

- dose rate measurements,
- collimator advise,
- check of drum id. in data base,
- rotation of the drum,
- gamma spectrometry,
- storage of γ-spectrum,
- storage of dose rate,
- printed output per drum of max. dose rate per measurement, drum id., collimator used and date of measurement.
Conclusions:

• As a result of visual inspection about 120 corroded drums were separated.
• As a result of the dose rate measurements 50 drums could be transported as MAVA.
• The gamma spectra give a good indication of the filling grade of the drums.
• About 250 drums decay from HAVA to MAVA within 5 years.