POST-IRRADIATION EXAMINATION OF HIGH TEMPERATURE REACTOR FUEL ELEMENTS

W. Schenk* and E.H. Toscano°

* Forschungszentrum Jülich, Institut für Sicherheit Forschung und Reaktortechnik, D-52425-Jülich, Germany.
° European Commission, JRC-Karlsruhe, Institute für Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe, Germany.

ABSTRACT

In the framework of the Share Cost Actions (SCA) of the European Commission, a European Project of Development of High Temperature Reactor (HTR) technology has been approved. The project includes developments in the fields of reactor physics, fuel technology, safety, material needs and feasibility of key components and systems.

In the domain of fuel technology a key point is represented by the testing of the irradiation behaviour of new type of fuels and their fabrication methods. In this context, the post-irradiation examination (PIE) of irradiated fuels will be needed to assess the quality of new concepts. Among the PIE-methods the verification of the release behaviour of fission gases (Xe, Kr) and solid fission products (Cs, Sr, Ag, etc) under accident conditions will be of paramount importance.

In the past, the so-called Cold Finger Apparatus (KÜFA) was developed in the Forschungszentrum Jülich (FzJ) to test HTR-fuel design and fabrication methods. Using this device, the fission product release from fuel spheres can be tested up to 1800 °C.

In the framework of the SCA/HTR-technology, an up-dated version of the KÜFA will be installed in the hot cells of the Institute for Transuranium Elements. In the paper, a description of the apparatus will presented and the experimental programme discussed.

1 To be presented to the European Working Group “Hot Laboratories and Remote Handling”, to be held from 27th to 29th September, 2000, at Paul Scherrer Institute, Villigen, Switzerland.
ADVANTAGES OF HTR’s

- INHERENTLY SAFE
 - Low response to T-transients
 - Highly negative T-coefficient (U-fuel)

- PUBLIC ACCEPTANCE

- PROCESS HEAT / ELECTRICITY PRODUCTION

- LOW COSTS

- CAPACITY OF BURNING DIFFERENT FUEL TYPES
 - U, Pu (also military), Th, etc.

- VERY HIGH BURN-UP CAN BE ACHIEVED
 - more than 20 FIMA

- VARIABLE SIZE
 - Modular concept

- LOW WASTE BURDEN

- LOW ATMOSPHERIC POLLUTION

- PROLIFERATION RESISTANT

- He-COOLANT ADVANTAGES
 - good heat transfer coefficient
 - compatibility at all T with all materials
 - practically no activation
 - tendency to leak
PREVIOUS EXPERIENCE WITH HTRs IN THE WORLD

USA
- Peach Bottom: 40 MWe (compacts)
- Fort St. Vrain: 330 Mwe (compacts)

GERMANY
- AVR: 15 MWe (pebble bed)
- THTR: 300 MWe (pebble bed)

GREAT BRITAIN
- DRAGON: compacts
- GCRs: fuel rods
NEW HTRs IN THE WORLD

RUSSIA
- GT - MHR: - 600 MWth
 - compacts

JAPAN
- HTTR: - 30 MWth
 - compacts

CHINA
- HTR-10: - 10 MWe
 - pebble bed

SOUTH AFRICA
- PBMR: - 10 MWe
 - pebble bed
BROKEN PARTICLE AND SCHEMATIC BUILT-UP

Kernel
Buffer layer
Dense Carbon layers
SiC-layer

all fuel a based on 50\% of

p.4
FUEL ELEMENTS AND COATED PARTICLES

FUEL COMPONENTS

1. Pyrolytic Carbon
2. Silicon Carbide
3. Boron Carbide
4. Uranium carbide
Maintain the strategic advantage of mastering a high quality of fuel fabrication achieved in Europe in the past

1) Data collection

2) Kernel fabrication (UO$_2$, PuO$_2$, etc.)

3) Advanced coatings (ZrC, etc.)

4) Very high burn-up (> 20 FIMA)

5) Fuel qualification:
 - Irradiation program
 - Post-irradiation examination

6) Modeling
COLD-FINGER APPARATUS

Insulation valve
Lifting device

Water-cool cold finger
Ta-cylinder
Exchangeable cold plate
Stainless steel

Heating element
Fuel element

Vacuum and He-chamber

Electrical connections

He-inlet

Pyrometer
Isolation
Thermocouples

Cooling water
Vacuum connection

He-outlet

Hot cell frame

simulor LOCA → He as offgaser

mov t.: 2000 °C
MEASUREMENT OF THE SOLID FISSION PRODUCTS
DATA OF IRRADIATED FUEL SPHERES

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Particle number</th>
<th>Irrad. time (fpa)</th>
<th>Temperature surf./centre (°C)</th>
<th>Burnup (% FIMA)</th>
<th>Fluence (E>1MeV) 1E+25 1/m²</th>
<th>Rel. at end of irradi.</th>
<th>R/B Kr 85m</th>
<th>Fract. rel. Cs 137</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRJ2-K15/1</td>
<td>9.600</td>
<td>533</td>
<td>800 / 970</td>
<td>14,1</td>
<td>0,2</td>
<td>1E-06</td>
<td>1E-06</td>
<td></td>
</tr>
<tr>
<td>FRJ2-K15/2</td>
<td>9.600</td>
<td>533</td>
<td>980 / 1150</td>
<td>15,3</td>
<td>0,2</td>
<td>5E-09</td>
<td>9E-07</td>
<td></td>
</tr>
<tr>
<td>FRJ2-K15/3</td>
<td>9.600</td>
<td>533</td>
<td>800 / 990</td>
<td>14,8</td>
<td>0,1</td>
<td>3E-09</td>
<td>4E-07</td>
<td></td>
</tr>
<tr>
<td>HFR-K5/1</td>
<td>16.400</td>
<td>564</td>
<td>cycled</td>
<td>6,7</td>
<td>4,0</td>
<td>2E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFR-K5/2</td>
<td>16.400</td>
<td>564</td>
<td>800/1000</td>
<td>8,8</td>
<td>5,8</td>
<td>1E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFR-K5/3</td>
<td>16.400</td>
<td>564</td>
<td>(centre)</td>
<td>9,1</td>
<td>5,9</td>
<td>1E-07</td>
<td></td>
<td>not</td>
</tr>
<tr>
<td>HFR-K5/4</td>
<td>16.400</td>
<td>564</td>
<td></td>
<td>8,7</td>
<td>4,9</td>
<td>3E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFR-K6/1</td>
<td>16.400</td>
<td>633</td>
<td>cycled</td>
<td>7,2</td>
<td>3,2</td>
<td>2E-07</td>
<td></td>
<td>measured</td>
</tr>
<tr>
<td>HFR-K6/2</td>
<td>16.400</td>
<td>633</td>
<td>800/1000</td>
<td>9,3</td>
<td>4,6</td>
<td>2E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFR-K6/3</td>
<td>16.400</td>
<td>633</td>
<td>(centre)</td>
<td>9,7</td>
<td>4,8</td>
<td>2E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFR-K6/4</td>
<td>16.400</td>
<td>633</td>
<td></td>
<td>9,2</td>
<td>4,5</td>
<td>6E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 FE AVR-GLE 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 FE AVR-GLE 4</td>
<td></td>
<td>9600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TYPICAL HEATING CURVE

1250°C / 0.5 h
1050°C / 1.5 h
300°C / 0.5 h

47°C/h

1600...1800°C

30 h

100 bis 1000 h

Temperatur (°C)
CONCLUSIONS:

- An existing equipment, developed at FZ-Jülich, will be up-graded and installed in the hot cells at ITU in the framework of a SCA of EC.

- After installation, already irradiated specimens and others to be irradiated in HFR-Petten up to ultra-high burn-up will be tested.