Future Industry Hotlab Needs
- AREVA NP View -

W. Goll, J. Thomazet, H. Schnabel

AREVA NP

> Introduction

> Milestones in the development of AREVA NP Fuel Assemblies

> Areas of hot cell support and examples of achievement
 - Fuel assembly
 - Water chemistry

> Future trends

> Conclusions
Average Assembly Burnup Achieved as of 2007/12/31
Milestones in the Development of PWR Fuel Assemblies of AREVA NP

- AGORA® fuel ass.
 - 4.95 w/o U235
- M5™ structure
- MONOBLOC™ guide tube
- PCI remedies (Concerto)
- Low Gd design
- 4.4 w/o U235
- AFA™ 3G fuel assemblies
- M5™ spacers and guide tubes
- FOCUS™ fuel assemblies
- AFA™ 2G fuel assemblies
- DUPLEX cladding
- 4.0 w/o U235
- M5™ cladding
- ERU fuel assemblies
- HTP™ fuel assemblies
- Mark-BW™ fuel assemblies
- AFA™ fuel assemblies
- Gd₂O₃, full-low-leakage cores

- MOX-fuel assemblies
- 3.6 w/o U235
- Zircaloy spacers and guide tubes
- Partial-low-leakage cores

75 80 85 90 95 00 05 10 year

Milestones in the Development of PWR Fuel Assemblies of AREVA NP

AGORA® fuel ass.
- 4.95 w/o U235
- M5™ structure
- MONOBLOC™ guide tube
- PCI remedies (Concerto)
- Low Gd design
- 4.4 w/o U235
- AFA™ 3G fuel assemblies
- M5™ spacers and guide tubes
- FOCUS™ fuel assemblies
- AFA™ 2G fuel assemblies
- DUPLEX cladding
- 4.0 w/o U235
- M5™ cladding
- ERU fuel assemblies
- HTP™ fuel assemblies
- Mark-BW™ fuel assemblies
- AFA™ fuel assemblies
- Gd₂O₃, full-low-leakage cores

- MOX-fuel assemblies
- 3.6 w/o U235
- Zircaloy spacers and guide tubes
- Partial-low-leakage cores

75 80 85 90 95 00 05 10 year
Design of Modern AREVA NP Fuel Assemblies

BWR
- Internal water channel
- Part-length fuel rods

PWR
- Guide tube
- Fuel rods
- Spacer grids
Objectives of Hotcell Work for the Fuel Manufacturer

> Provide data for design and modelling
> R&D, development of advanced materials
> Provide rodlets for test or for further examinations (E.g. RIA, LOCA, PCI)
> Investigation of incidents or special cases, i.e. new or unexpected phenomena
> Fuel backend studies
Survey of Key Design Data from Hotcell Examinations
- Fuel Assembly -

> Fuel rod (reactor operation and transient tested rodlets):
 - Dimensions (length, diameter),
 - Fission gas analysis,
 - Fuel density
 - Microstructural information (grain, porosity, rim, distribution and characterization of fission products)
 - Thermal annealing experiments
 - Isotopic analysis

> Rod cladding
 - Corrosion behaviour
 - Hydrogen concentration
 - Mechanical data (strength, thermal creep, …)
 - Crud characterization

> FA structural data (spacer, guide tube, water channel, fuel channel)
 - Corrosion behaviour
 - Hydrogen concentration
 - Mechanical data

> Control rods
 - Swelling
 - Mechanical data
Improvement of Corrosion Resistance
-PWR Cladding Corrosion (from metallographies)-

- Corrosion resistance is mainly determined by Sn and Nb
Reduction of Hydrogen Uptake
- PWR Cladding Data (as measured) -

![Graph showing the relationship between Burnup [MWd/kgU] and Hydrogen content [ppm] for different fuel types (PCA-2, AFA2G, M5TM/Zr1Nb).]
Analysis of Fission Gas Release up to High Burnups

- AUC - 3.5-3.8 wt% U-235
- IDR - 4.1-4.3 wt% U-235

Fuel rod burnup [MWd/kgHM] vs. Fission gas release

4 Zyklen, 5 Zyklen, 6 Zyklen, 7 Zyklen, 8 Zyklen, 9 Zyklen
Optimization of the Fuel Density Behaviour

![Graph showing the relationship between fuel density and burnup for different types of fuel.]

- **Old standard fuel**
- **Modern stable fuel**
- **UO$_2$ / AUC**
- **UO$_2$ / stable fuel**
- **UO$_2$/PuO$_2$**
Long Term Thermal Creep Tests on Irradiated Samples

Electrical furnace
- Double-wall tube

Gas filling station
- Gas inlet
- Pressure gauge

Diameter measuring device
- Axial adjustment
- Fuel rod sample
- Measuring head
- Circumferential adjustment

Results of qualification tests
- Graph showing strain over time for different temperatures and pressures:
 - 350°C/200 bar
 - 410°C/100 bar

Refabrication of Rodlets for Transient Testing
In-pile and Power Ramp Tests Performance
PCI Resistance – PWR conditions

> Ramp testing in the OSIRIS reactor:
MOX microstructure: X-Ray mapping and image analysis

« On the characterization of plutonium distribution in MIMAS MOX by image analysis »
G. Ondinet et al., IAEA-TECDOC-1416, October 2004, p 221
AREVA NP’s Perspective of Future Hot Cell Work

> Further optimization of AREVA NP’s FAs is a continuous task (Budget!).

> Technical and economical optimization of the lab techniques is a continuous task, too.

> Burnup increase tends to saturate due to limited potential of a further U235 increase. Tendency of an increase of the plant power for different customers, opening up of operational margins by improved fission gas retention, optimization of structural behaviour with regard to corrosion and mechanical behaviour.

> Growing importance of coolant chemistry topics (power increase, dose rate reduction, life time of components); techniques, such as Li and B measurements in the oxide, characterisation of the crud (chemical composition, porosity, …)

> Refabrication of rodlets for transient testing and their subsequent analysis remains interesting (e.g. mechanical properties of cladding and fuel).

> PCI remedies in the new operational conditions (burnup, power increase)

> MOX fuel in the new operational conditions (burnup, power increase)
CONCLUSIONS

> In the last two decades, burn-up and reliability of PWR and BWR fuel could be increased considerably. It would not have been possible without comprehensive analysis performed in hot cells all over the world.

> In future, hot cell work will be needed to further optimize the fuel for the existing fleet of reactors, but also for the advanced LWRs still to come. As their basic technique remains essentially unchanged, existing hot cell techniques can also be utilized for a while.

> For the near future, a lowering of budget for hot cell investigations can be expected. As a result, all doers, i.e. fuel manufacturer and hot cells, will have to focus on more economic processes.
Future Industry Hotlab Needs
- AREVA NP View -

W. Goll, J. Thomazet, H. Schnabel

AREVA NP

Thank you for your Attention!
Vielen Dank für Ihre Aufmerksamkeit!
Any reproduction, alteration, transmission to any third party or publication in whole or in part of this document and/or its content is prohibited unless AREVA NP has provided its prior and written consent. This document and any information it contains shall not be used for any other purpose than the one for which they were provided. Legal action may be taken against any infringer and/or any person breaching the aforementioned obligations.