Irradiated Fuel Behaviour under Thermal Transient: An Overview of the capabilities at the LECA-STAR hot Laboratory

Pontillon Y*, Clement S, Capdevilla H, Malgouyres PP

CEA, DEN, DEC, SA3C, F-13108 Saint-Paul-lez-Durance, France
Outline

- Introduction
- MERARG II facility:
 - General presentation
 - Experimental loop
- MEXIICO facility
 - Context
 - Experimental loop
 - Scoping test
- Main programs (FGR)
- Conclusion
He and Fission Gas Release (FGR) from nuclear fuels are an important operating and safety issue:

- **Release**
 - Rod over-pressure due to the large inventory of fission gases in the free volumes:
 - Limitation on burn-up extension
 - Storage, ...
 - Source Term:
 - Off normal conditions ...

- **Retention**
 - Swelling:
 - PCI
 - HBS - formation:
 - Specific behaviour ...

- Source Term:
 - Off normal conditions ...

- Limitation on burn-up extension
- Storage, ...

- Specific behaviour ...
Correct evaluation of He and FGR remain a significant and important challenge

One of the most useful ways to achieve this

Annealing experiments
With or Without Pressure

Sample examinations:
Before and After Experiment

Time dependence

He FGR

Absolute level

MERARG II and MEXIICO facilities

Fuel Performance Code validation
The main objectives of MERARG II facility: extract all or part of the gaseous inventory from an irradiated fuel sample (one pellet) by annealing.
MERARG II: Experimental Loop (1/6) - Crucible

Three different configurations:

- Mo crucible, T° up to 2200°C
 - W/W-Re Thermocouple
 - Inert atmosphere: He, Ar

- Pt crucible, T° up to 1400°C
 - Pt/Pt-Rh Thermocouple
 - Oxidant or Inert atmospheres: Air, He, Ar

- W crucible, T° up to 2800°C
 - W/W-Re Thermocouple
 - Inert atmosphere: He, Ar

The analysis of the results of these tests consisted in combining the T_{CC}, T_{CP} and T_{SP} measurements for each thermal sequence programmed on the HF generator regulation device.
MERARG II: Experimental Loop (3/6)

µ-gas chromatography:

<table>
<thead>
<tr>
<th>Pic Area</th>
<th>Standard value</th>
<th>Experimental error</th>
</tr>
</thead>
<tbody>
<tr>
<td>326</td>
<td>104 ppm</td>
<td>± 10</td>
</tr>
<tr>
<td>3259</td>
<td>1003 ppm</td>
<td>±50</td>
</tr>
<tr>
<td>31050</td>
<td>10100 ppm</td>
<td>±341</td>
</tr>
<tr>
<td>142740</td>
<td>50 000 ppm</td>
<td>±1708</td>
</tr>
</tbody>
</table>

Allows to analyse stable gases

<table>
<thead>
<tr>
<th>Element</th>
<th>Detection limit</th>
<th>Linearity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kr</td>
<td>0,6 ppm</td>
<td>5 decades</td>
</tr>
<tr>
<td>Xe</td>
<td>0,3 ppm</td>
<td>5 decades</td>
</tr>
<tr>
<td>He</td>
<td>3 ppm</td>
<td>5 decades</td>
</tr>
<tr>
<td>N₂, O₂, …</td>
<td>~ 1 ppm</td>
<td>5 decades</td>
</tr>
</tbody>
</table>

R² = 0,9998

HotLab, September 22-24, 2008

Y. Pontillon (CEA/DEN/DEC/SA3C)
MERARG II: Experimental Loop (4/6)

µ-gas chromatography:

![Graph showing gas chromatography data with lines for H2 (B), O2 (B), and N2 (B) over time.](image)
On-line gamma spectrometry: gas measurement

Total release from the fuel

- Kr85 at/s/g (capacité)
- Kr85 at/s/g (échantillon)
- TCP estimée

Allows the fission gases leaving the fuel to be recorded.
On-line gamma spectrometry: fuel sight

Total release from the fuel
(differential measurement: low sensitivity)

- Cs137
- Ba140
- Ru103
- Zr97
- Température fond du creuset (°C)

MERARG II: Experimental Loop (6/6)

Allows the FP leaving the fuel to be recorded

Y. Pontillon G. Ducros, International VERCORS Seminar, October 15-16th, 2007 – Gréoux les Bains, France
In order to investigate the impact of stresses on FGR, decision was made to install a high pressure furnace in a hot cell.

Une et al., JINST
MEXICO: Experimental loop

Maximum temperature / pressure: 1600°C / 160 MPa - Maximum heat up rate: 1K/s
Restraint state is simulated by mean of argon at high pressure
The standard fuel sample is a fuel pellet (few grams).

Y. Pontillon et al., “Fuel Performance under different PWR conditions: An overview of the annealing test facilities at the CEA Cadarache 2005 Water Reactor Fuel Performance Meeting”, October 2-6, 2005 --Kyoto, Japan
MEXICO: Experimental loop

"Inactive" qualification phase:
MEXIICO: Scoping test

"Inactive" qualification phase:
Fission Gas Release: Main Programs

- **GASPARD** (fuel behaviour under loca type conditions):

- **ADAGIO** (inter and intra-granular gas fraction):

- **Doped UO₂** fuels (TANOX, TANOXOS, CONCERTO)

- **GFR** (for instance NIMPHE samples, (U,Pu)N and (U,Pu)C), High Burn up Fuels, MOX, ...
FIRST PEAK (600-800°C)
Grain boundary cracking

MAIN PEAK (T > 1000°C)
Bubbles interconnection and release

85Kr release
UO₂, ~70 GWd/t

GASPARD PROGRAM
ADAGIO PROGRAM

UO₂ samples

- initial state: 85Kr (matrix + bubbles intra + grain boundaries)
- Re-irradiation: low T, He
- 133Xe from re-irradiation: intra-gran. gas tracer
- first thermal plateau: air, 380°C

1. **Re-irradiation**
 - low T, He
 - 133Xe from re-irradiation: intra-gran. gas tracer

2. **Opening of grain boundaries**
 - fraction of intergranular gas

3. **Release of complete gas inventory**
 - U_4O_9 beginning at grain boundaries
 - opening of grain boundaries
 - release of all inter-granular gas + fraction of intra-granular gas
 - quantification by γ spectrometry of 85Kr and 133Xe release
 - difference = amount of inter-granular gas
Conclusion

The MERARG II facility offers accurate results for the fission gas and He measurements thanks to on-line gamma spectrometry and µ-GC.

The MEXIICO facility will offer accurate results for the fission gas measurements under high pressure thanks to on-line gamma spectrometry.

The complementary between these two facilities will provide very attractive results regarding the pressure effect on fission gas release from irradiated fuels.
Irradiated Fuel Behaviour under Thermal Transient: An Overview of the capabilities at the LECA-STAR hot Laboratory

45th annual meeting
“Hot Laboratories and Remote Handling”
Working group, Kendal, UK
September 22th – 24st, 2008

Thank you for your attention