Development of an optical method to measure deformations of nuclear fuel cladding

Alexandre Vauselle, Yves Pontillon
CEA/CAD/DEN/DEC/SA3C/LAMIR
Centre d'études de Cadarache, 13108 Saint Paul lez Durance, France

Laurent Gallais
Institut Fresnel, CNRS, Aix-Marseille Université, Ecole Centrale Marseille, Campus de Saint-Jérôme, 13013 Marseille, France
Summary

1. Context
2. Speckle interferometry
3. Application
4. Conclusion
1. Context

- PWR (ceramics UO2 or MOX)
- Normal condition
1. Context

- Transient power

Only Material Test Reactor (MTR)
1. Context

- CEA new device
 - Induction oven
 - Same thermal conditions as in reactor
 - Create deformation on cladding
 - Subject of the study

To measure in real time the deformation of the external face of the clad
1. Context

- **Specification**
 - Real time measurement
 - High temperature of the cladding
 - Electromagnetic fields
 - Hotlab chamber: lack of space
 - Deformation: magnitude from few to hundreds \(\mu m \), circumferential

- **State of the art: Optical methods**

 Measurement of the cladding deformation by Speckle interferometry
2. Speckle interferometry

- Optical interferometry

Comparison between two states: measure of displacement
2. Speckle interferometry

- Speckle Pattern

⇒ Cladding = rough surface
2. Speckle interferometry

- Speckle interferometry

Fringes: access to the deformation

➡️ Fringes are lines of level
3. Application

- **Experimental device**
 - Source
 - Lens
 - CCD camera
 - Beam splitter cube
 - Reflective surface under test
 - Reference surface
3. Application

- Deformable cylinder

- Metallic cylinder

- Cone

- Retaining
3. Application

• **Results**
 - Same constraint
 - Range: 0° to 180°
 - One measure each 10°
3. Application

- **Is it a deformation?**
 - Modeling deformation on a tube

 - Triangular
 - Gaussian
 - Bulge
3. Application
3. Application

- Comparison

Not a circumferential deformation!

At least 2 contact points
4. Conclusion

• Speckle interferometry works
 – Feasibility test are finished
 – Good resolution for our application
 – Problems: thermal condition, vibration

• Perspectives
 – Absolute value of displacement
 ➔ Phase shifting analysis
 – Hotlab cells constraints
Thanks for your attention