The Transport of 'Spent Fuel' Samples

Garry Owen, WNTI

IAEA CSM
May 2010
Contents

- About WNTI
- Unique Issues for Transport
- Basis for Transport
- Safety Principles
- Packaging Options
- Comparing Package Types
- Differences Bulk vs Samples
- Transport Challenges
- Denial Issues
- Other Issues
- Key Objectives for me
World Nuclear Transport Institute

- Established in 1998
- Founder members Areva, FEPC Japan, BNFL
- 46 Members - drawn from all sectors of the radioactive transport industry
- Several members involved in transport of SF, HLW, and Storage Technology
Unique Issues for Transport

- Public Domain
- Uncontrolled environment
- Multi-modal
- International
- Multi-agency, multi-regulator
Basis for Transport

- Transport must be safe, secure and cost effective

- Safety is vested in the Package
 - risk based packaging approach
 - high hazards are protected with ‘accident proof’ packaging
 - excellent safety record
 - no reported transport accidents resulting in serious radiological consequences
Safety Principles

Safety Principles for radioactive transport;

- Flask 'contents' drives the safety approach.
 - Accurate radionuclide inventory,
 - Heat generation, radiation protection, leaktightness, chemical form

- Regulations provide controls for
 - Activity, criticality, shielding and heat.
 - Withstanding normal transport
 - Safely withstanding 'credible' accident scenarios.
Packaging options for 'spent fuel samples'

Transport controls apply hazard values to each nuclide - A2 Values

- Unirradiated uranium has < 1 A2
- Typically 'spent fuel' has a relatively high hazard (100's, 1000's of A2's)
- Package types suitable for 'irradiated' spent fuel are limited to
 - Type B(M)F
 - Type B(U)F
 - Type CF
- Fissile criteria will apply if there is >15g of fissile nuclides.
Comparing the Package Types

<table>
<thead>
<tr>
<th>Package Type / Criteria</th>
<th>Type B(M)F</th>
<th>Type B(U)F</th>
<th>Type CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode of transport</td>
<td>All</td>
<td>All</td>
<td>All</td>
</tr>
<tr>
<td>Road, Rail, Sea & Air</td>
<td>With restrictions for air</td>
<td>With restrictions for air</td>
<td>All</td>
</tr>
<tr>
<td>Hazard Rating</td>
<td>Unlimited subject to safety case</td>
<td>Unlimited subject to safety case</td>
<td>Unlimited subject to safety case</td>
</tr>
<tr>
<td>(No's of A2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Restrictions</td>
<td>< 3000 A2</td>
<td>< 3000 A2</td>
<td>No Limit</td>
</tr>
<tr>
<td></td>
<td>< 3000 A1</td>
<td>< 3000 A1</td>
<td></td>
</tr>
<tr>
<td>Type of Approval</td>
<td>Multilateral</td>
<td>Multilateral (unless fissile excepted)</td>
<td>Multilateral (unless fissile excepted)</td>
</tr>
<tr>
<td>Testing</td>
<td>Standard Accident</td>
<td>Standard Accident</td>
<td>Enhanced Accident</td>
</tr>
<tr>
<td>Testing - Approx Cost</td>
<td>High 10's to 100's of thousands of euros</td>
<td>High 10's to 100's of thousands of euros</td>
<td>Very High 100's to 1000's of thousands of euros</td>
</tr>
<tr>
<td>Testing Experience</td>
<td>High</td>
<td>High</td>
<td>Very Low</td>
</tr>
<tr>
<td>Project Risk</td>
<td>Low-Medium</td>
<td>Low-Medium</td>
<td>Medium to High</td>
</tr>
</tbody>
</table>
Differences 'Bulk' vs 'Samples'

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Spent Fuel (Bulk)</th>
<th>Spent Fuel (Samples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>High</td>
<td>Very Low</td>
</tr>
<tr>
<td>Frequency basis</td>
<td>Campaign</td>
<td>Sporadic</td>
</tr>
<tr>
<td>Contract</td>
<td>Higher value contract</td>
<td>Lower value contract</td>
</tr>
<tr>
<td>Dedicated flasks</td>
<td>Fleet of flasks</td>
<td>Ad-hoc arrangements</td>
</tr>
<tr>
<td>Dedicated infrastructure</td>
<td>Dedicated</td>
<td>Hire, as required</td>
</tr>
<tr>
<td>Risk of denial</td>
<td>Very Low</td>
<td>Medium to high</td>
</tr>
<tr>
<td>Mode preference</td>
<td>Road rail and sea</td>
<td>Air?</td>
</tr>
</tbody>
</table>
Transport Challenges

In order of difficulty (easiest first):

- Irradiated/MOX samples upto 3000 A2 in a Type B flask, all modes.
- May require a dedicated new 'Type B' flask design, INF 1 vessel for sea transport

- Irradiated/MOX samples >3000 A2 by road rail & sea
 May require a dedicated new 'Type B' flask design, INF 1 vessel for sea transport

- Irradiated/MOX samples >3000 A1/A2 by all modes
- Requires a new 'Type C' flask design
Denial Issues

- Transport routes are 'strategic' and 'closely guarded'.
- Routes are very fragile and easily lost.
- Radioactives may be seen as an 'unattractive business proposition' particularly for low volumes and limited shipments.
- Many airlines opt out. Many shippers opt out!
- 'Captain' has the ultimate authority to carry or not.
Other Issues

- Securing reliable transport partners will help avoid 'denial and delay'
- Security considerations
- Safeguard considerations
- 'Transfrontier shipment of radioactive waste and spent fuel' directive
Key Objectives for me!

To better understand the problem!

- How many 'Hot Labs'? 10-15
- How many transports? 2 per lab
- Geographical locations, modes of transport required?
- Quantity of samples?
- What is the budget for a 'small inexpensive flask'?
- No's of A2's or A1's in the samples?
- Other uses for the flask design?
- Interface issues?
Thankyou