Spent Fuel Attribute Tester realisation and applications

I. Almásia, Z. Hlavathya, L. Lakosia, C.T. Nguyena, N. Buglyób, M. Beierb

aDepartement of Radiation Safety, Safeguards Group, Institute of Isotopes, Budapest, Hungary
bNuclear Power Plant, Paks, Hungary

IAEA Technical Meeting, 2011
Portable SFAT (HU-SFAT)
developed in the frame of the Hungarian support programme to IAEA safeguards

Detector house: watertight, pressurized by air for higher safety, 50mm lead shielding for side gammas

Detector: hemispherical 500 mm³ CdZnTe medium resolution detector, connected to a mini MCA, controlled by a laptop

Air collimator: modular design, 1 m long, ∅55 mm stainless steel tubes, available up to 8 pieces, neighbour effects minimized by collimator design

No fuel/object movement

Positioning stand is mounted on the railings of the refuelling machine, install and handle by two persons
Use of SFAT
Applications

- 5 min measurement time: 10% STD for the 662 keV peak of Cs-137 for normal BU, 6-7 y CT fuel; even in the presence of a second (upper) layer with short-cooled SFAs adjacent
- 662 keV peak identified even for extremely low BU (order of GWd/tU) fuel of 6-7 y CT
- Verification of Co-60 sources method for revealing undeclared irradiation.
- Test of tank without fuel (construction part of damaged fuel assemblies)
- Test of canisters with damaged fuel (type T28 for parts of fuel assemblies and T29 with baskets for pellets only)
- Limitation: 500mm thick water shields the gamma 662keV!
Spectrum of a Co-60 container measured with 4 collimator tubes and lead rings, Measurement time: 1000 s.
BG and canister T28 measured with 2 collimator tubes, Measurement time: 300 s.
Two canisters (T29) measured with 2 collimator tubes, Measurement time: 300 s.
Fuel assembly, 7 y CT measured with 2 collimator tubes, Measurement time: 300 s.
Fuel assemblies at different cooling times and burnups

CT=2/3 y

CT=2.7 y
BU=22.6

CT=3.7 y
BU=41

CT>14 y
Summary

- The SFAT device was designed and built in our Institute,

- SFAT was applied successfully in a series of problems where the measurement of the Cherenkov light would be problematic due to geometry, water quality, etc.
Thank You for Your attention!