Development and Operation of the Fuel Accident Condition Simulator (FACS) Furnace for High Temperature Performance Testing of Irradiated Fuel

Idaho National Laboratory

HOTLAB 2013
September 25, 2013
Idaho Falls, Idaho, USA
Very High Temperature Gas Cooled Reactor (VHTR)

- Helium cooled, graphite moderated
- Coated particle fuel
- Outlet temperature 750-950°C
- Production of electricity and high temperature process heat for industrial applications

- Passive safety characteristics
- Very slow thermal transients during depressurized loss of force cooling
- Maximum core temperature \(\leq 1600°C \)
Tristructural isotropic (TRISO) coated particle fuel

- Coated particle fuel is at the heart of high temperature gas-cooled reactor performance.
- Fuel research, development, and qualification is focused on demonstrating fuel performance under normal and accident conditions.
 - Can be fabricated with very low defect fractions ($\leq 10^{-5}$).
 - This fuel is very robust with no failures anticipated during irradiation and under accident conditions.
 - Fission product retention within particles results in a high degree of safety.
TRISO fuel safety testing at INL

- Project initiated to develop safety testing capability at INL along the lines of the KÜFA furnace
- Requirements highlights:
 - Up to 2000°C in pure helium
 - Monitor fission gas releases (Kr-85) and collect fission products (Ag, Cs, Sr, Eu, I) with removable condensation plates
 - Accommodate samples up to 60 mm diameter
 - Designed for high level of automated remote operation
- System manufactured by TevTech LLC (Billerica, Massachusetts)
- Delivered to INL 2008
- Mock up testing from 2008 – 2010
- Installed in the Hot Fuel Examination Facility (HFEF) Main Cell in 2010
- 2011 – 2013 in-cell testing, troubleshooting, collection efficiency testing
Fuel Accident Condition Simulator

System components
- Main furnace assembly:
 - Main chamber
 - Cold finger assembly
 - Transfer assembly
 - Support frame and motors
- Control cabinet and user interface
- Cooling water heat exchanger
- Power supply
- Helium and argon gas supply system
- Fission gas monitoring system
FACS system schematic
Main chamber

- Graphite heating element (2000°C max temperature)
- ~770 Amps/28 V @ 1600°C
- Water-cooled steel shell
- Tantalum sample holder and hot zone components
- Sample temperature monitored with 2 Type C thermocouples
- Tantalum flow tube (84 mm inner diameter)
- Refractory metal (tungsten, molybdenum) and steel heat shields
- Adjacent condensation plate transfer chamber
Cold finger and condensation plate

- Aluminum cold finger construction
- Rotary actuator to capture condensation plate (CP)
- CP temperature monitored with 2 Type J thermocouples
- Water flow rate in cold finger is 28 L/min
- Stainless steel CP
- CP temperature is ~67 – 106°C with furnace at 1600°C
Transfer chamber assembly

- Manual loading/removal of condensation plates through access port
- Automated sequence for evacuation and He purge of transfer chamber once plate transfer initiated
Condensation plate transfers

- Entire sequence takes ~6 minutes on average
Condensation plate analysis

- Manual transfer from HFEF hot cells to Analytical Laboratory for analysis
- Gamma counting for **Cs-134, Cs-137, Ag-110m, Eu-154, and Eu-155** with HPGe spectrometers
- Acid dissolution and analysis for non-gamma emitting fission products
 - Chemical separation and gas flow proportional counting for **Sr-90**
 - Mass spectrometry for other isotopes (including **Pd** isotopes)
Fission gas monitoring system (FGMS)

- Dual lead shielded liquid nitrogen cold traps
- 2-HPGe, 10% relative efficiency, closed end coaxial detectors
- Adjustable tungsten shuttered collimators
- A variable lift cart for detector height positioning
- A complex valve manifold system to allow the user to run the monitors in a variety of configurations
- INL developed control software.

Additional details:
FGMS Schematic Diagram

Flow Options in Series
- Light Blue = Trap 2 then Trap 1
- Pink = Trap 1 then Trap 2

- Fission Gas Exhaust
- Gas Purifier
- Flow Meter
- To Cell Exhaust

- Charcoal Column
- Liquid Nitrogen Chamber
- Collimator
- Vacuum Jacket
- Shielding
- HPGe Detector
- To Data Acquisition Electronics and Computer Control

- Auxiliary Sample Trap (Not Normally Installed)
Current FACS Safety Testing Status

- Safety tests on irradiated TRISO fuel began in 2013
- Three fuel compacts from the AGR-1 irradiation experiment have been tested
- System performance has been very good; several lessons learned from first operational experience

<table>
<thead>
<tr>
<th>Compact</th>
<th>Fuel type</th>
<th>Burnup (% FIMA)</th>
<th>Fast Fluence (n/cm² x10²¹)</th>
<th>TAVA* (°C)</th>
<th>Safety test temperature (°C)</th>
<th>Test date</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGR-1 6-4-1</td>
<td>Baseline</td>
<td>13.2</td>
<td>2.4</td>
<td>1041</td>
<td>1600</td>
<td>Apr 2013</td>
</tr>
<tr>
<td>AGR-1 4-3-3</td>
<td>Variant 3</td>
<td>18.5</td>
<td>4.2</td>
<td>1094</td>
<td>1600</td>
<td>Jun 2013</td>
</tr>
<tr>
<td>AGR-1 4-3-2</td>
<td>Variant 3</td>
<td>16.2</td>
<td>3.7</td>
<td>1057</td>
<td>1800</td>
<td>Aug 2013</td>
</tr>
<tr>
<td>AGR-1 4-3-1</td>
<td>Variant 3</td>
<td>18.5</td>
<td>4.1</td>
<td>1092</td>
<td>1600</td>
<td>Nov 2013</td>
</tr>
</tbody>
</table>

* Time-average volume-average temperature
Compact 4-3-3 Safety Test Summary Results

- Rapid release of ~34% of Ag-110m in first 30 hours but little release after reaching 1600°C. Silver is probably from inventory in matrix at end of irradiation.
- Very low Cs release (1E-6). Very good retention of Cs by intact TRISO coatings.
- Kr-85 release rate is low and constant throughout test. No failed TRISO.
- Eu and Sr release rate are approximately constant throughout test. Final Eu-154 release fraction is 8E-4.
Compact 4-3-2 Safety Test Summary Results

- Rapid release of ~6% of Ag-110m in first 30 hours. After ~100 h at 1600°C Ag-110m release again increase. May be result of Ag diffusion through SiC.

- Several rapid Kr-85 releases. Indicates failed SiC and failed TRISO.

- Cs release increases dramatically. Precedes with Kr release events. Indicates failed SiC and failed TRISO.

- Eu release rate is approximately constant for first 160 h of test, then increases. May be result of Eu diffusion through SiC.
Summary

- FACS furnace has been developed to perform safety testing of irradiated fuel in helium at temperatures up to 2000°C.
- System is installed and operational in the Hot Fuel Examination Facility main hot cell.
- Safety testing of AGR-1 TRISO fuel compacts is underway.
- System performance has been very good.
Acknowledgements

- **Lance Cole, Kim Davies, David Laug**: FACS furnace development and engineering
- **Les Scott**: Lead FACS system engineer
- **Dawn Scates and Ed Reber**: FGMS system development and operation
- **Kent Dale and Clay Brower**: FACS hot cell operators

This work was supported by the U.S. Department of Energy, Office of Nuclear Energy, under the Next Generation Nuclear Plant project.
Paul Demkowicz
Paul.Demkowicz@inl.gov
(208) 526-3846

Idaho National Laboratory
Extra slides
Maintenance and sample loading configurations

- Flow tube replacement
- Sample loading
- Heating element maintenance
- Lower flange maintenance

Pneumatic clamps

- Heat shield removal and maintenance
Condensation plate transfers
Condensation Plate Activity (Compact 6-4-1)