Radiation hardness testing of an organic liquid scintillation detector for use in high dose rate accident response scenarios

Ashley Jones
Department of Engineering, Lancaster University, United Kingdom
October 2016
Contents

• Collaboration & Project introduction.

• Technology being developed.

• Detector payload.

• Liquid organic scintillator detector tests.

• Liquid organic scintillator detector results.

• Conclusions.
National Maritime Research Institute
Introduction

- Fuel location and identification for decommissioning efforts of Fukushima Daiichi NPS.
- Uncertain fuel debris state.
Difficulties

- High dose rates.
 - Requirements for the investigation of inside primary containment vessel (PCV) – 100 Gy/hr dose rate with 1000 Gy total dose tolerance.

- Air dose rate inside the PCV.
 - Unit 1 - 4.1-9.7 Sv/hr.
 - Unit 2 - 73 Sv/hr.
 - Unit 3 – 1 Sv/hr.

- Submerged situation – Reactors flooded with sea water.
 - Unit 1 – 3 m water.
 - Unit 2 – 30 cm water.
 - Unit 3 – 6 m water.

- Unknown geometry.
 - Potential for blockages and obstacles inside the reactor.
AVEXIS MiniROV

- AVEXIS MiniROV – 145mm ø x 250mm.
 - Developed for the inspection of legacy storage ponds.

AVEXIS MicroROV

- MicroROV – 110mm ø x 450mm
 - Smaller diameter to fit through 115mm access ports.
 - Radiation tests of each component is underway.
Detector Payload

• Payload requires both neutron and gamma ray detection capabilities.

• Detector/s must fit inside the ROV central body design envelope.
 – 110 mm ø x 300 mm.

• Detector/s must tolerate dose rates of 100 Gy/hr, 10 hour exposure time.
 – Total absorbed dose of 1 kGy.
Organic liquid scintillation detectors

• EJ-301 liquid scintillator detector.

• Detector small size.
 – 35 mm Ø x 80 mm.

• Mixed field capabilities.

• Radiation hardness & tolerance unknown.
Radiation Hardness Testing

• Dalton Cumbria Facility.
 – 60Co irradiator

• Consists of 2 60Co rods.
 – Can be used in conjunction or isolation.

• Capable of supplying absorbed dose rates between 240 – 27,000 Gy/hr.
Testing

• First experiments set to 942 Gy/hr ± 2%.
 – Detector observed no damage after 800 Gy.

• Second experiments dose rates reduced.
 – Minimum dose rate, 10 Gy/hr, the detector is fully saturated after a few seconds.
Conclusions

- Organic liquid scintillator detector ideal for localisation of dose rates 10 Gy/hr.
 - Small size ideal for a backup detector.
 - Survives through high dose rates.

scCVD Diamond Detector by Cividec Instrumentation

CeBr$_3$ inorganic scintillator by Scionix, Netherlands
CeBr$_3$ inorganic scintillator

ROV control board

Water pumps

HD camera and LEDs

scCVD diamond detector

Thank you for listening