Windscale Laboratory Hotcell

The challenges of maintaining operations during a major refurbishment

Des Wright
NNL locations

The main ‘hot cell’ centre in the UK is located at Windscale ➔
Overview of Windscale Laboratory

• Originally constructed in 1960’s for Post Irradiation Evaluation (PIE) of uranium metal (Magnox) fuel and adapted for AGR fuel as the civil UK fleet developed

• Extended to provide capability for all other reactor fuel types, including PWR & BWR

• Continually upgraded and modernised

• More than 50 years of continuous experience
Hot Cells

13 Large Hot Cells
- 2.5m x 4m x 11m
- 5 workstations
- Internal crane
- Services
- MSMs
North flask receipt

Transport flasks up to 60te
Overview of Windscale Laboratory

• Flexible - capable of handling a full range of nuclear fuels and irradiated materials, delivered in a wide variety of transport flasks

• Heavily shielded hot cells (60 work stations)

• Majority of work is undertaken to underpin safety cases: fuel performance & development, reactor operation & life extension, waste disposal & storage

• Why is refurbishment required?
 • Modern safety case standards
 • Obsolescence
 • Reliability
Major refurbishment

• Scope of work (50 – 60M Euro over 5 years)
 • Revised safety case
 • Facility cranes (60te, 40te, 25te)
 • Shield door interlocks and hydraulics
 • Horizontal posting ports
 • Ventilation
 • Electrical services
 • Seismic strengthening

• Major cell refurbishments:
 • ZnBr window replacement with Lead Glass
 • In cave hoist replacement
 • Services and consoles
 • Installation of power manipulator
 • Radiometrics and instrumentation
Major refurbishment

- Scope of work (50 – 60M Euro over 5 years)
 - Revised safety case
 - Facility cranes (60te, 40te, 25te)
 - Shield door interlocks and hydraulics
 - Horizontal posting ports
 - Ventilation
 - Electrical services
 - Seismic strengthening

- Major cell refurbishments:
 - ZnBr window replacement with Lead Glass
 - In cave hoist replacement
 - Services and consoles
 - Installation of power manipulator
 - Radiometrics and instrumentation

Delivering customer work
Challenges

• Customer work
 • Very busy PIE facility – competing priorities
 • Total shutdown for refurbishment is not an option

• Legacy waste in the facility
 • Fissile and non-fissile material from historic projects (some many decades old)

• Resources
 • Limited engineering resources to support scale of work

• Planning and delivery
Cell refurbishment - preparation

- Some cells not operational for many years
- In cell equipment unreliable
 - No crane
 - No power
 - Import / export of material
- Removal of legacy waste material was a major challenge
Cave refurbishment

- Once cell is empty and decontaminated the work can start
- Draining of ZnBr windows
- Removal of window carcasses
- Removal of old infrastructure
- New lead glass windows
- New in cave crane
- New services
- Internal refurbishment
- Installation and commissioning of PIE equipment
Decontamination and preparation

Robust radiological control
Predicted dose budget was 35.8mSv
Total dose received was 23.98mSv
Highest individual 1.63mSv

- Remote cleaning and decontamination
 - 12 weeks
 - 1st man entry
 average readings
 10µSv/min
- Hands on decontamination
 - 4 weeks
 - Dose levels achieved
 <1µSv/min
Window replacement

• First window replacements in over a decade
 • New equipment required
 • Hydraulic rams to remove ZnBr window carcass
 • Push Lead glass window into position

• Plan for the unexpected!
 • Undocumented previous work
Installation of Lead Glass Windows

• New bench design
 • Transport lead glass windows – 6te
 • Push window into position

• Use machined lead to seal and source test

• 8 windows successfully replaced in the last 2 years
• Why
 • Safety case review identified obsolescence and safety shortfalls in current system
 • Repeater panels and warning signs necessary

• Significant timescale challenges
 • Designed, installed and commissioned within 12 months

• Need to minimise disruption to ongoing operations
 • Close relationship with supplier
 • Parallel installation on plant
 • Enhanced factory testing
Key features

• Dual feed to each instrument - one break or unplanned disconnection ensures the system remains fully functional, this will also flag an alarm condition.

• Remote interface stations will work independently to record and display live RPI status and data.

• The plug / socket arrangement will ensure connection and disconnection is possible without exposing the current carrying conductors within the node junction box.

• Installation risk reduced due to expanded factory testing scope off site.
Result

- 130 instruments installed
- Brand new design
 - Improved safety features
 - Improved reliability
 - Reduced installation costs (£1M saving)
 - Reduced future maintenance costs
- New product on market (Omniflex)
 - Planned for other buildings on the Sellafield site
Challenges and Learning

• Plan with realistic timescales
 • Demonstrated performance

• Plan for the unexpected
 • Fitting new equipment to old hotcells
 • Inaccurate plant drawings
 • Installation and removal issues
 • Be prepared to innovate

• Integrated plan
 • Understand the pinch points
 • Resource, space, waste, operational restrictions
 • Clear communication of priorities

• Communication / Culture
 • Open, honest communication of progress and issues
 • One team!