Irradiation Assisted Stress Corrosion Cracking Testing Laboratory at INL

S. Teysseyre, J. H. Jackson, M. Heighes

HOTLAB 2016
Karlsruhe
Oct 2-6, 2016
Irradiation Assisted Stress Corrosion Cracking (IASCC)

What/Why IASCC?

- Irradiation assisted stress corrosion cracking (IASCC) describes environmentally assisted cracking in reactor structural components that is exacerbated by radiation exposure. It leads to intergranular cracking with little to no ductility of the irradiated components.
- IASCC is one of the main issues of consideration for lifetime extension.
- Issue to consider for material development, new manufacturing processes, new environment.

IASCC crack growth rate testing requirements?

- Long experiments (6 months)
- Water chemistry control important
- Crack growth monitoring required (dcpd)

Example of crack length and water chemistry as a function of time.
IASCC test loop

Water loop to control water chemistry, pressurize and circulate water to autoclave

Autoclave to host test specimen

Actuator apply stress

Dcpd leads

Reference electrode

specimen
Laboratory layout

Requirements
- Power back up (long experiments)
- Specimen transfer from outside facilities
- Shielding and loading capability for 1T CT specimen (shielding 45000 R/hr source)
- Accessible for regular maintenance
Construction: initial room

Step 1: relocation of the machine shop
Construction: floor modification
IASCC laboratory

Two independent refreshed testing loops able to maintain BWR or PWR water chemistry:

- Water conductivity and dissolved oxygen content measured at room temperature
- Dissolved gas controlled by gas overpressure in reservoir
Utility/transfer cell

Transfer done through utility cell
Transfer cask: GE 100
Served by 2 manipulators
Additional decontamination performed as needed
Transfer cask

Specimen transfer:
- Cask lowered in the pit
- Cask mates with the cell.

Custom made bag rind, plug,
Two autoclaves rated for BWR and PWR testing conditions. Each autoclave is equipped with:

• Two heat exchangers
• A servo hydraulic actuators (up to 100kN of load) located underneath the hotcell
• Two thermocouples (inside) plus two thermocouples on the outside surface
• Platinum leads for dcpd crack growth measurement
• Platinum flag and reference electrode for ECP measurement

Served by:
• Three manipulators
• Travelling chain hoist
• Camera
Autoclaves

- Rating : 3250 psi, 750°F (400°C)
- Useable space: 5” ID, 12” tall (capability for one 1T CT specimen or smaller CTs in series)
- Sealing : clamping system.
Post test analysis: SEM

NEOSCOPE: bench top SEM with most electronic is located outside the cell
Alloys X-750 (HTH) and XM-19 (SA) are used in many structural applications in BWRs ranging from original equipment to modifications and repair hardware.

- SCC and fracture toughness data in BWR water chemistry conditions are rather limited, particularly when exposed to neutron irradiation.

A multi-year program (target completion 2018) is in place to examine the SCC and fracture toughness behavior of these materials under a variety of BWR conditions, both un-irradiated and irradiated.
Program Overview

Material
- X-750, obtained from core shroud upper support bracket
- XM 19

Irradiation
- Three target fluences:
  - $5 \times 10^{19}$, $2 \times 10^{20}$ and $1 \times 10^{21}$ n/cm$^2$
  - Temperature control: 288°C, water cooled

Post Irradiation Examination (PIE)
- SCC and IASCC crack growth rate
  - K dependency, ECP dependency
- Fracture toughness
- Tensile properties
- Microstructure characterization
EPRI-2 Experiment… 1st in Loop 2A, Feb 2013

- Controlled chemistry
- Temperature control
- Isolated from coolant
Un-irradiated X-750 (HTH) SCC CGR

- \( K = 25 \text{ ksi}\sqrt{\text{in}} \)
- High CGR
- Strong effect of corrosion potential on CGR

Unirradiated crack growth rate

<table>
<thead>
<tr>
<th>Type</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWC*</td>
<td>(8.8 \pm 18 \times 10^{-7} \text{ mm/s} )</td>
</tr>
<tr>
<td>HWC</td>
<td>(1.3 \pm 13 \times 10^{-8} \text{ mm/s} )</td>
</tr>
</tbody>
</table>

* With 0-10 ppb sulfate
Irradiated X-750 (HTH) \((1.93 \times 10^{20} \text{n/cm}^2)\)

IASCC CGR Testing

- \(K=25 \text{ ksi/vin}\)
- \(K=15 \text{ ksi/vin}\)

Unirradiated crack growth rate

- NWC* 8.8 – 18 \(\times 10^{-7}\) mm/s
- HWC 1.3 – 13 \(\times 10^{-8}\) mm/s
X-750 (HTH) Summary Results

- No significant changes in CGR after $1.9 \times 10^{20} \, \text{n/cm}^2$ irradiation
- Effectiveness of HWC mitigation retained
K dependency after $1.9 \times 10^{20} \text{n/cm}^2$ irradiation similar to that of unirradiated X-750.
IASCC testing laboratory operational

Program assessing the effect of fluence on the evolution of SCC and fracture toughness of X-750 (HTH) and XM-19 under a variety of BWR conditions is underway

The X-750 (HTH) specimens irradiated to the fluence of $1.93 \times 10^{20}$ n/cm$^2$ (intermediate fluence) did not exhibit an increased CGR compared to unirradiated X-750 (HTH) tested in either NWC or HWC conditions
Questions ?