Highlights and Recent Changes to Fuel PIE Activities at CNL

Visual Examination and Fuel Chemical Burnup

October 5, 2016
Outline

• Visual Examination System (Stereomicroscope)
 • Old camera system
 • Stereomicroscope development
 • CMOS camera testing

• Chemical Burnup Measurements Study
 • La as a standard
 • Other techniques investigated
 • Comparison between La and TIMS
Visual Examinations at Chalk River

Background

• Set-up for PHWR fuel (~0.5 m Fuel Pins or Bundles)

• Non-destructive
 • Through cell window
 • Digital periscope
 • In-cell Video Cameras
 • Stereomicroscope

• Destructive
 • Low Mag “macroscope”
 • High Mag microscope: metallography/ceramography
Visual Examinations at Chalk River

Old Stereomicroscope Camera System (before 2011)

- Ported optical system
- Attached digital camera to eyepiece
- Quartz glass was ageing (browning)
- Rulers in-cell for dimensioning
- Separate fuel pin rotating movement stage
Stereomicroscope Upgrades

Stereomicroscope Replacement 2011-2014

- New digital XY stage (√)
- Rad tolerant tube cameras (√)
 - Greyscale (x)
 - Low resolution (x)
- Digitally operated microscope system (√)
- Unit mounted in cell but removable for maintenance (√)
Stereomicroscope Upgrades

Stereomicroscope Replacement 2011-2014

- Halogen to LED lighting
 - Significant reduction in heat generation
 - Using 4 LED banks to control intensity

- Multiple magnification levels (8.4x to 37.7x)

- Digitally operated microscope system (√)

- Unit mounted in cell but removable for maintenance (√)
Stereomicroscope Upgrades
Stereomicroscope Upgrades 2014-2016

• Upgraded electronics

• Upgraded interface

• Switch to 10 megapixel CMOS cameras (√)
 • From greyscale to full color (√)
 • High resolution (√)

• Removal of stereo-capability
Stereomicroscope Upgrades

Stereomicroscope Upgrades 2014-2016

• Why CMOS
 • Higher resolution and color
 • Estimate life of a non-rad tolerant camera under actual conditions

• CCD
 • ~3X longer life than CMOS when tested
 • Inferior image quality

• Hybrid CID cameras
 • Picture quality not comparable with CMOS or CCD
Stereomicroscope Upgrades

Stereomicroscope Upgrades 2014-2016

• Camera Testing
 • CMOS cameras
 • No shielding
 • Fuel inspections from 2014 August to 2016 February
 • CANDU fuel pins (5+ months cooling time)
 • Left in the hot cell

• 2016 February
 • Both cameras failed
 • Recently discharged research reactor driver fuel
Stereomicroscope Upgrades

Camera Upgrades

Pre 2011 Camera Outside of Hot Cell

2011 to 2016 Tube Camera
Stereomicroscope Upgrades

Camera Upgrades

2014 to 2016 CMOS

2/3 Full Resolution
Stereomicroscope Upgrades

Stereomicroscope Upgrades 2016

- Disposable camera approach
 - Quick release sockets
 - Multiple camera type compatibility

- USB 3 camera compatibility

- Refining optimal camera specifications
 - CCD/CMOS/CID
 - 7-20 megapixels
Burnup Evaluation

Why?

- Focus on advanced fuel cycles
 - (MOX and Thorium based fuels)

- Criteria
 - Precision
 - Cost
 - Timeliness
 - Associated dose

- Review recent burnup campaigns
Burnup Evaluation

Methods

• La-139 (HPLC)
 • Standard for Chemical Burnup at Chalk River to 2015

• Uranium and Plutonium Isotopic (TIMS)
 • Used less frequently than La
 • Multiple isotopic ratios to improve precision

• Gamma Spectroscopy
 • Qualitative only
Burnup Evaluation

Nd-148

- Not used at CNL
- More complex than HPLC La (Nd must separate isotopes)
- Requirement for dedicated facilities and special fume hoods
- More expensive
- Higher associated doses
Burnup Evaluation
Comparison between HPLC La and TIMS Isotopics

- Recent experimental burnup measurements
- Compared with code calculated results
- Assess precision
- Reviewed sample preparation methods
Burnup Evaluation - SEU and MOX
Experiments Used for the Study

• Simulated CANDU conditions using experimental loops

• SEU
 • \(\sim 1.4 \text{ wt}\%\); Varied pellet geometry
 • \(\sim 2.3 \text{ wt}\%\); 42-element bundle testing

• MOX
 • \(\sim 3 \text{ wt}\%\) Pu in DU; Pu destruction proof of concept
 • \(\sim 5 \text{ wt}\%\) Pu in DU; Pu destruction/fabrication processes
 • \(\sim 1 \text{ wt}\%\) Pu in DU; Pu homogeneity in the microstructure
 • \(\sim 0.9 \text{ wt}\%\) Pu in NU; Direct Use of PWR fuel in CANDU (DUPIC)
Burnup Evaluation - SEU

Comparison between HPLC La and TIMS Isotopics

- SEU up to 30 MWd/kgHE
- Less scatter in Isotopics
Burnup Evaluation - MOX

Comparison between HPLC La and TIMS Isotopics

- MOX up to 23 MWd/kgHE
- Less Scatter in Isotopics
Burnup Evaluation - Thoria

Experiments Used for the Study

- Thoria up to 50 MWd/kgHE

- Smaller sample size (difficult to make definitive conclusions)

- Thoria
 - ~ 1.8 wt% Pu in $(\text{Th}, \text{Pu})\text{O}_2$; Extended burnup testing of Thoria
 - ThO_2 and 1 to 1.5 wt% ^{235}U in $(\text{Th}, \text{U})\text{O}_2$; Thoria fuel cycles
Burnup Evaluation - Thoria
Comparison between HPLC La and TIMS Isotopics

- Less scatter observed in isotopic measurements
- No clear trend observed compared to code predictions
Burnup Evaluation

Other Considerations

<table>
<thead>
<tr>
<th>Consideration</th>
<th>HPLC La</th>
<th>TIMS Isotopic U and Pu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Cell Measurement</td>
<td>Requires precise weight of sample (Absolute)</td>
<td>Does not require precise weight of sample (Relative)</td>
</tr>
<tr>
<td>Initial Content</td>
<td>N/A</td>
<td>U and Pu initial content must be known</td>
</tr>
<tr>
<td>Cost</td>
<td>Cost effective</td>
<td>More expensive 2-4 times as much as HPLC La</td>
</tr>
<tr>
<td>Time</td>
<td>Quickest method</td>
<td>Slightly longer for few samples; significantly longer with many samples*</td>
</tr>
<tr>
<td>Dose Consequence</td>
<td>Generally less dose; highly automated process</td>
<td>More dilute samples, but much more labour intensive</td>
</tr>
</tbody>
</table>

Processing time for large number of samples can be reduced by adding more equipment
Burnup Evaluation

Overall Results

• Precision of isotopics preferred for experimental programs
• La based measurements for more economical analysis

• NU and SEU fuels
 • U Isotopics preferred

• MOX fuels
 • U and Pu isotopics preferred

• Thoria fuels
 • HPLC La, U and Pu isotopics (more data required)
Conclusions

• Stereomicroscope Upgrades
 • Digitally operated microscope system
 • Successful testing with CMOS cameras
 • A quick mount for on-the-job camera replacement

• Burnups Evaluation
 • TIMS Isotopic measurements (U and Pu) preferred
 • La used for quicker and more cost effective measurements