Current Status of the Irradiated Materials Characterization Laboratory at INL with Limited PIE Microstructural Characterization

Dr. B. D. Miller
Idaho National Laboratory
Sept. 2017
Mito, Japan
Outline

• **Current Status of Irradiated Materials Characterization Laboratory (IMCL)**
 – Reason for IMCL
 – Sample Analysis Stations
 – Current IMCL layout and operational equipment
 – Future expansion and equipment

• **Limited post irradiation examination characterization at IMCL**
 – Focused Ion Beam Microscopy
 – Electron Probe Micro-Analyzer
 – Transmission Electron Microscopy
Reasons for IMCL

• With recent incorporation of high end characterization equipment on irradiated materials and fuels, INL needed a facility to properly house the equipment.

• Includes Focused Ion Beams, Electron Probe Micro Analyzers, Transmission Electron Microscopy, and a shielded sample preparation area (SSPA).
Design Basis of IMCL

• **Low vibration**
 – Floor designed as a single concrete slab with isolation pads for vibrating equipment

• **Temperature control**
 – Less than 1°C per hour

• **Low electromagnetic interference**
 – As to not interfere with operation of high-end electron microscopes
Current Layout of IMCL

- IMCL currently has 5 areas designated for characterization of irradiated materials
 - SSPA, TEM, FIB/PFIB SAS, and Thermal Properties SAS
 - Electron Probe Micro-Analyzer (EPMA) SAS
 - Plasma and Focused Ion Beam SAS (FIB/PFIB)
 - Thermal properties SAS
 - Transmission Electron Microscopy (TEM)

- Room for future expansion
IMCL Shielded Cask (ISC)

- Two specially designed casks for IMCL use
- Incorporate La Calhéne mating system
- Shielding equivalent of ~21 cm of steel using lead
- Compatible with various facilities at INL
- Compatible with the flying pig being developed

IMCL Shielded Cask (ISC)

ISC awaiting docking with the Shielded Sample Preparation Area

Look. It is a flying pig. Oink.

Flying Pig

IMCL shield cask (ISC)

ISC awaiting docking with the Shielded Sample Preparation Area
Shielded Sample Preparation Area-SSPA

• The SSPA's primary focus is sample preparation of highly radioactive materials/fuels
• All portions of the system are connected allowing easy transfer of samples
• Three shielded bays
 – CRL Manipulators
 • Type L-HD
 • Lead equivalent of 21 cm steel
• Radiological glovebox
 – N₂ inert
 – Sample preparation of low dose samples
• Radiological fume hood
 – Decontamination activities
 – Sample preparation

Relaxing after a long day at the SSPA

Various images of the SSPA line
Shielded Sample Preparation Area Cont’d

• Three shielded bays
 – CRL Manipulators
 • Type L-HD
 – Sample preparation bay
 • Autopolisher, low speed saw, ultrasonic cleaner, etc
 – Optical microscopy bay
 • Keyonce VHX-5000 microscope
 • 100-1,000x magnification
 – Shielded transfer cell
 • Transfers and radiation level measurements
Sample Analysis Stations (SAS)

- IMCL uses a variable “hot cell” design designated as Sample Analysis Stations (SAS)
- Instruments are coupled to a glovebox through a loading/unloading port
- Shielded steel walls enclose the glovebox and instrument, providing shielding
 - 21 cm steel walls
- Manipulators are attached to the gloveboxes, operated outside the shielded walls
- Flexible design to meet future equipment needs
- With only the loading port attached the glovebox, instrument maintenance is simplified as the outside of the instrument is not contaminated
- Designed to shield a 2 Ci-Co60 source

SAS layout for the Focused Ion Beam Microscopes

Steel wall sections awaiting assembly
Focused Ion Beam SAS’s

• Duel SAS structure installed for two Focused Ion Beams (FIB) microscopes
 – FEI Helios Plasma FIB
 – FEI Quanta 3D FIB
 (radioactively contaminated)

• SAS currently undergoing readiness review for operational status

• Fully operational on irradiated fuels and materials in late spring 2018
EPMA SAS

• Similar to the FIB/PFIB SAS setup but with extra manipulator for EPMA operations
• EPMA is a CAMECA SX-100R with 4 wavelength dispersive spectrometers
• Currently operational handing irradiated fuel samples
Thermal Properties SAS

- Currently fabricated and unassembled at IMCL
- Planned for installation in 2018
- Operational in 2019
- Planned equipment include:
 - Differential Scanning Calorimetry
 - Thermal Conductivity Microscope
 - Laser Flash
Transmission Electron Microscopy-TEM

• IMCL is equipped with a FEI Titan 200 keV CHEMI-Scanning Transmission Electron Microscope (STEM)
• Equipped with 4 Energy Dispersive Spectrometers (EDS) for fast elemental mapping
• Located in acoustic sound lowering room to improve resolution
• Able to perform sub-nanometer chemical analysis
• Currently operational to characterize irradiated materials and fuels
Future Expansion?

• Options include:
 – Atom Probe Tomography
 – Shielded Scanning Electron Microscope
 – Mechanical Properties Cell
 – Additional FIB’s?

http://toonut.com/dog-house-expansion/
Post Irradiation Examinations-FIB

• **FIB/PFIB** offer site specific characterization of materials on micron scale and below

• **Capabilities of the FIB/PFIB include**
 - TEM lamella preparation
 - Cube preparation for serial sectioning and chemical profiling of specific regions
 - Cross-section milling for visualization of the microstructure under the polished surface
 - Electron backscatter diffraction surface preparation
 - and many others…….
Post Irradiation Examination-EPMA

- EPMA characterization performed on an irradiated TRISO particle irradiated at the Advanced Test Reactor (ATR) at INL
- Uranium Oxycarbide surrounded by C buffer layers and a SiC confinement
- Focus on fission product migration across the fuel particle into the TRISO particle

Cracked TRISO particle

WDS maps of a TRISO fuel particle
Post Irradiation Examination-TEM

- U-Mo fuels being studied for use in research and test reactors throughout the world
- Forms ordered bubble superlattice at fission densities typically lower than 4.5×10^{21} fissions/cm3
- It was assumed that the bubbles were stabilized by Xe fission gas
- Proof that Xe is indeed present in the fission gas pores

EDS maps of the bubble superlattice in U-Mo fuels
Post Irradiation Examination-TEM

- HT-9 has been used as a cladding material for advanced fuels
- Rare earth elements diffuse into the cladding
- Diffusion can weaken the mechanical properties of the cladding
- Include:
 - Nd, Ce, Pr, Mo, and La

Scale Bar is 1 µm
Concluding Remarks

• Post-irradiation examination of irradiated fuels and materials has commenced at IMCL

• The EPMA, FIB, and TEM are radiologically operational with the FIB/PFIB coming online in early spring

• The thermal properties cell has been fabricated with anticipation of being installed in 2018 and operation in 2019

https://blogs.ams.org/mathmentoringnetwork/2014/08/04/math-talk-preparing-your-conference-presentation/
Questions!