Poster session

Wade Karlsen, VTT

1 slide in 2 min each
The European Spallation Source Active Cells Facility - Challenges in Construction - HOTLAB 2018
The European Spallation Source Active Cells Facility – Challenges in Construction – HOTLAB 2018

- Mechanical versus civil construction tolerances
 - 2 different worlds meet at the same location
- Re-bar design and casting sequences
 - 500 kg/m³ re-bar, 1.3 m thick high density concrete walls
- Uneven concrete surfaces
 - Casting formworks shift and swell differently during casting
- Installation of cast in items in tight spaces
 - Clashes between cast in items and formworks
Size Reduction Equipment in the ESS Active Cells Facility
ESS ACF Size Reduction Equipment
Alex Wagner – UK Atomic Energy Authority

A variety of large radioactive components shall require size reduction and handling operations within the European Spallation Source (ESS) Active Cells Facility.

A systems engineering approach was conducted, producing a function-based set of requirements for various size reduction equipment. Size reduction equipment includes:

1. Machining Station (accepting tender submissions)
2. Shaft Cutting Station (tenders in review)
3. Auxiliary tools (shear cutter, orbital cutter, bolt removal tools)

Main difficulties of cutting technologies required:

1. Radiation hardness and remote maintainability
2. Dry cutting (no coolant liquids)
3. Large cut depths and long cut paths
P03

Mika Helin

Platom Oy

PLATOM’s Expertise and Capabilities to Support Construction and Operation of Hot Cell Facilities
PLATOM’s Expertise and Capabilities to Support Construction and Operation of Hot Cell Facilities

- Platom has 20 years of experience in delivering consultancy services, components and systems for nuclear industry in several countries
- The evaporation and waste treatment (EWT) box for radioactive waste water treatment from Hot Cell operations was delivered to VTT in spring 2018
- Earlier a drying cabinet for liquid waste volume reduction was supplied to Forsmark NPP
- These deliveries further expand the services Platom can offer to the international nuclear industry
P04

Akinori Sato

Japan Atomic Energy Agency

The preliminary study for safety design of JAEA’s Radioactive Material Analysis and Research Facility “Laboratory-2” dedicated to fuel debris analysis at TEPCO’s Fukushima Daiichi Nuclear Power Station site
In 2011 May, 1F accident occurred.

According to Mid-and-Long-Term Roadmap for decommissioning of 1F NPS, fuel debris retrieval from the first unit will start in 2021.

JAEA is designing the Radioactive Material Analysis and Research Facility (Okuma Analysis and Research Center) adjacent to the 1F site.

In Laboratory-2, fuel debris is mainly handled and analyzed to characterize chemical and mechanical property.

The practically conservative assumption is requested for the safety design.

The radiation shielding evaluation and the criticality safety evaluation.

Through the preliminary evaluations, the feasibility of safety design of Laboratory-2 is implied.
P05

Ondrej Srba

Research Centre Rez Ltd.

Preparation of experiments at CVR Hot-cell
Preparation of experiments at CVR Hot-cell

Ondřej Srba
An overview of the Remote Handling solutions and equipment at JRC Karlsruhe`s Hot Cells facilities
An overview of the Remote Handling solutions and equipment at JRC Karlsruhe’s Hot Cells facilities

L. Velnom, A. Busto, J. Marconato
European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security,
Postfach 2340, D-76125 Karlsruhe, Germany

The 'Alpha-Gamma' intervention team within the unit Waste Management at JRC Karlsruhe develops, adapts and operates various Remote Handling technologies taking the highest care with respect to contamination monitoring and radioprotection regulations.

In total we operate and maintain about 90 Master Slave Manipulators (MSM) of various sizes and types together with several Robot arms for heavy duty or complex operations.

High Activity α steel cases with its two MSM’S.

R&D on Grippers
Various types of engineered bootings
Minor Actinide Laboratory
Intervention on MA Lab HC

55th Annual meeting – HotLab 2018
Helsinki, Finland
P07

Patrik Sandström
Studsvik Nuclear AB

Self-threading electrical discharge machine - hot cell modifications and the first year of active machining
A remote technique for a preparation of tension test specimens from the irradiated round bars
A remote technique for a preparation of tension test specimens from the irradiated round bars (P08)
Volodymyr Revka
Institute for Nuclear Research, Kyiv, Ukraine

- Round bars have been put in the surveillance capsules instead of standard tension specimens (Rivne NPP-1)
- Preparation of tension specimens from irradiated round bars is needed
- A remote lathe with computer control has been developed
- A brief description of equipment
- Application of equipment for machining specimens
P09
Cameron Howard
Canadian Nuclear Laboratories (CNL)

Using Novel Small Scale Mechanical Testing to Link the Mechanical Properties and Deformation Mechanisms of High-Dose Activated Inconel X-750
Using Novel Small Scale Mechanical Testing to Link the Mechanical Properties and Deformation Mechanisms of High-Dose, Activated Inconel X-750

Cameron Howard, Vineet Bhakhri, Chris Dixon, Heygaan Rajakumar, Clinton Mayhew, Colin Judge
Canadian Nuclear Laboratories (CNL), 286 Plant Road, Chalk River, Ontario K0J 1J0, Canada

~20 dpa, $T_{irr} = 300 \, ^\circ C$

84 dpa, $T_{irr} = 300 \, ^\circ C$

Intergranular fracture

Trans-granular channel fracture
P10

ZHANG Xiang-yang

China Institute of Atomic Energy

High Energy X-ray Study on Nondestructive Detection of Fuel Assemblies
Nuclear fuel assembly is the core of the reactor, in order to further study the performance of the fuel assemblies, we have conducted nondestructive detection research of assembly with high energy X-ray for several years, and experimental detection device was developed.
P11

Lei yang

Nuclear Power Institute of China

Research on Closed-end Burst Testing of Irradiated Fuel Cladding Tube
Research on Closed-end Burst Testing of Irradiated Fuel Cladding Tube

Blasting pressure: over 200MPa
Measurement accuracy: 5μm

The curve of pressure-time

Designs for automatic loading
Automatic sealing and locking device
Measuring principle
Continuous deformation measurement device
The research on oxide dispersion strengthened (ODS) ferritic steel by chemical method
P13

Kiho Kim

Korea Atomic Energy Research Institute

Remote Metal Fuel Slug Fabrication System Based on Injection Casting
The Korea Atomic Energy Research Institute (KAERI) has been researching a technology for fabricating TRU (Transuranium) metal fuel using TRU ingot produced from Pyroprocessing.

Such TRU metal fuel fabrication processes should be conducted in a fully remote manner at a hot-cell because of a nature of a radioactivity of TRU ingot. All the in-cell processes and equipment operations should be fully conducted using remote handling tools.

To remote fuel fabrication technology development, we constructed the Remote Fuel Fabrication Mock-up (RFFM) located in the Fuel and Material Test Facility at KAERI this year.

RFFM is an efficient means to test and verify an engineering-scale metal fuel fabrication using non-radioactive materials from the remote operation and maintenance viewpoint in advance before TRU ingots are used at hot-cell.

RFFM consists of an engineering-scale metal fuel slug fabrication system and a remote handling system. The engineering-scale metal fuel slug fabrication system is one to fabricate metal slugs based on an injection casting. The remote handling system is a means to make the metal fuel slug fabrication possible in a remote manner.

We demonstrate the constructed RFFM and its capability examined through the remote fabrication using copper conducted in RFFM. Remote copper slug fabrication results based on injection casting are also presented.
P14

Miho Suzuki
Japan Atomic Energy Agency

Sample preparation techniques for post irradiation examinations in the Reactor Fuel Examination Facility
Sample preparation techniques for post irradiation examinations in the Reactor Fuel Examination Facility

M. Suzuki, Y. Kimura, M. Takano, N. Mita

1. Analysis for TMI-2 debris
 How to hold the various shaped sample?

2. Precise hydrogen analysis of cladding tube
 How to remove the pellet without damaging the cladding tube?

3. SEM observation of small sample
 How to stand a fragile sample?

Please visit Poster P14
P15

Ryan Devlin
National Nuclear Laboratory

Development of Laser Ablation Inductively Coupled Plasma – Mass and Optical Emission Spectrometry Methodologies for Elemental Analysis in a Medium Active Cell Environment
Development of Laser Ablation Inductively Coupled Plasma – Mass and Optical Emission Spectrometry Methodologies for Elemental Analysis in a Medium Active Cell Environment

Ryan Devlin1, Clive Lythgoe2 & Simon Chenery3

1National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, CA20 1PG, UK
2Sellafield Ltd, Sellafield, Seascale, CA20 1PG, UK
3British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK
Anabelle Lopez
CEA-DEN, Service d’Études des Matériaux Irradiés, CEA, Université Paris-Saclay

Nuclearization projects of a tomographic atom probe and of an electropolishing machine for researches on neutron irradiated materials at the atomic scale
NUCLEARIZATION OF A TOMOGRAPHIC ATOM PROBE AND AN ELECTROPOLISHING MACHINE FOR NEUTRON IRRADIATED MATERIAL STUDIES AT THE NANOMETRIC SCALE IN CEA/PARIS-SACLAY LECI HOTLAB FACILITY

Aluminum alloy (structural hardening): MgSi clusters
T. Petit (PhD), C. Ritter, K. Colas

304L Stainless steel irradiated with Fe ions:
Segregation around dislocation loops
E. Paccou (PhD), B. Tanguy

Nota: This work profited from a French government grant managed by the National Agency of Research under the program "Investments for the Future" (ref. ANR-11-EQPX-0020)

The phenomena controlling materials behavior under irradiation are on the atomic scale → Impact mechanical behavior at the components scale → Essential to understand ageing of these materials and to improve the nuclear safety. So how?

With a nuclearized Tomographic Atom Probe and nuclearized sample preparation methods

anabelle.lopez@cea.fr
kimberly.colas@cea.fr

55th Annual Meeting - HOTLAB 2018 – Helsinki, Finland - September 16th-21th 2018
P17

Olivier Dugne

CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes

Nuclearized Raman microscope coupled with a hot-stage: new tool to study (U,Pu)O$_2$-x fuel microstructure
Horiba© IHR-320 Raman spectrometer with 2 lasers: 532 nm & 660 nm

Confocal microscope equipped with 2 exchangeable turrets dedicated to:

- **Ex situ** microstructural observations (optical & Raman): equipped with 4 Olympus© objectives (x5 to x100), the micro-indenter device and a Raman calibration objective.

- **In situ** high temperature Raman experiment: equipped with 3 Mitutoyo© long working distance objectives (x5 to x50) and a Raman calibration objective.
New Raman microscope setup: L26, ATALANTE facility, France

Ex situ experiments
- Imaging (optical & Raman)
- µ-Hardness (Vickers)

In situ experiments
- Heating wire
 - Up to 2000°C
 - Controlled pO₂
 - Powders
 - Sintered samples (1.5x2 mm²)

See dedicated poster for details and illustrations
P18

Maho Iwasaki

Japan Atomic Energy Agency

Application of ICP-MS to analysis of nuclear fuel debris and radioactive wastes
Application of ICP-MS to analysis of nuclear fuel debris and radioactive wastes
Maho Iwasaki1,2, Soichi Sato1,2
1 Japan Atomic Energy Agency, Ibaraki 319-1195, Japan
2 International Research Institute for Nuclear Decommissioning Tokyo 105-0003, Japan

Samples are measured at laboratory-1 and laboratory-2.
At the beginning: 200 samples/year, 38 nuclides.

Our missions
Set up facilities supporting the decommissioning of 1F.
Perform analysis of radioactive waste samples and fuel debris from 1F.

Samples are measured at laboratory-1 and laboratory-2.

Okuma Analysis and Research Center
Fukushima Daiichi Nuclear Power Station (1F)

Laboratory-1
Laboratory-2
Administrative building

Conventional methods
Streamlined method

Sample
Separation
Separation
Separation
Radiometric Analysis
Nuclide A
Nuclide B
Nuclide C
Nuclide D
Nuclide E

Sample
Separation
Separation
Separation
Radiometric Analysis
Nuclide A
Nuclide B

☑ Complicated handling
☑ Time-consuming
Low analysis capability
-high analysis capability

☑ Easier handling
☑ Shorter analysis time

ICP-QQQ-MS(Agilent 8900)
Demonstration of Zr selective analysis

\[^{92}\text{Zr}^{*} \rightarrow ^{93}\text{Zr}^{*} + ^{93}\text{Nb}^{*} \]

Q1=93

Q2=109

\[^{92}\text{Zr}^{*} \rightarrow \text{Reaction with gas and change mass number} \]

\[^{93}\text{Zr}^{*} \rightarrow \text{Reaction with gas and change mass number} \]

\[^{93}\text{Nb}^{*} \rightarrow ^{93}\text{Zr}^{*} \]

Pass only target ions, and enter the EM

\[\text{OR5: Octopole Reaction Cell System, collision/reaction cell} \]

\[\text{EM: Electron multiplier detector} \]

Q1: Quadrupole 1 (The first mass filter)
Q2: Quadrupole 2 (The second mass filter)

Regarding Zr measurement, it is possible to eliminate the isobaric interferences using ICP-QQQ-MS with suitable "reaction gasses,NH}_3 in He".
Design, development, and installation of hot cell instrumentation for Spent Fuel Autoclave Leaching Experiments (SF-ALE)
Radionuclide release from spent nuclear fuel under geological repository conditions is required for realistic safety assessment

- The FIRST-nuclides project with a primitive set-up, 2012 - 2015
- Fuel dissolution under fully controlled conditions, 2017

- How, when, why? See the poster for details!
The Decommissioning and Waste Management programme of the European Commission Joint Research Centre
The Decommissioning and Waste Management programme of the European Commission Joint Research Centre

The programme aims to eliminate both historical and future liabilities at all nuclear sites of the JRC.

JRC-Petten
- High Flux Reactor
- Auxiliary buildings & infrastructure
- Since 1961

JRC-Geel
- Accelerators Since 1965
- Glove box laboratories, effluent water systems

JRC-Karlsruhe
- Hot Cells, commercial and 'exotic' spent fuels
- Glove box laboratories
- Since 1965

JRC-Ispra
- Since early 60s
- 2 Reactors & ancillary labs
- Hot cells facility
- Waste management
- Liquid effluents, Cyclotron, legacy wastes...

P21

Petr Švrčula

Research Centre Rez Ltd.

Transportation capabilities of hot cell facility
Transportations capabilities of the hot cell facility

Petr Švrčula, Ondřej Srba, Maria Zimina

- Transport cask TERA 300 type B(U)
- Domestic and international transportation
- Shielding abilities 300 TBq of 60Co
- Horizontal and vertical loading
P22

Amir Hushyar

Transnubel, Dessel, Belgium

First transport campaign of new type B(U) packaging for hotlabs
TNB 170

- **Allowed contents**
 - fresh or irradiated UOX/MOX fuel
 - sealed or unsealed radioactive sources
 - neutron sources of type Xx-Be
- **FANC license B(U)**
- **H/V loading and unloading**
- **Tilting, docking et extension tools**

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Outer Dimensions</th>
<th>Inner Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>600 mm</td>
<td>48 mm</td>
</tr>
<tr>
<td>Length</td>
<td>921 mm</td>
<td>201 mm</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty Weight</td>
<td>592 kg</td>
</tr>
<tr>
<td>Maximum Load</td>
<td>2.5 kg</td>
</tr>
</tbody>
</table>
P23

Sunggeun Kim

Korea Atomic Energy Research Institute

Mechanical test of spent fuel at KAERI-PIEF