Waste Processing and Medical Isotope Harvesting Requirements for a New Hot Cell at TRIUMF

Sam Varah, P.Eng.
svarah@triumf.ca
TRIUMF
TRIUMF was founded in 1968 and has delivered nearly 50 years of science and innovation for Canada.
520 MeV cyclotron, ~4000 hours of protons per year to:
- Medical isotope research
- Muon & Pion beams (60 kW)
- Cold neutrons (20 kW)
- Radioactive isotope beams (RIB’s) via ISOL – two 50 kW proton stations at ISAC

Four smaller (13 – 42 MeV) cyclotrons for commercial medical isotope production.
• ARIEL will add two new beamlines and target stations for ISOL production
 • 100 kW e^{-} target station → photofission
 • 50 kW p^{+} target station → spallation → fragmentation → fission → parasitic medical isotopes
• Once completed
 • Combined (ISAC + ARIEL) 9000 RIB hours per year
ARIEL Target Hall

- Remote handling crane
- Hot cell facility
- Beamline tunnel
- Target pit shielding
- Electron target
- Proton target
- Modules

~15 m
ARIEL Targets

Proton Target

Electron Target

$\leq 2.7 \text{ Sv/hr}$

@1 meter after 2-year cooldown

$\phi = 17.5 \text{ cm}$

22.5 cm

Preliminary p^+ target design based on CERN ISOLDE target
ARIEL Targets

\(p^+ \) irradiation: 500 MeV \(\bullet \) 100 \(\mu \)A \(\rightarrow \) 50 kW

Complementary techniques to existing ISAC.

\(e^- \) irradiation: 50 MeV \(\bullet \) 10 mA \(\rightarrow \) 100 kW

Hi power target, ISOL production driven by photofission.

Trudel et al., submitted to *Radiation Physics and Chemistry (under review)*, 2019
ARIEL Medical Isotopes

- Thorium spallation targets placed in ARIEL proton beam dump $\rightarrow ^{232}\text{Th}(p, p6n)^{225}\text{Ac}$
- 520 MeV beam loses $< 30\%$ energy in ISOL target $\rightarrow ^{232}\text{Th}^{225}\text{Ac}$ cross-section \checkmark
- Target transferred between beam dump and hot cell through pneumatic tube
- Up to $8.5\ kW$ of thermal power deposited in thorium
- Parasitic \rightarrow No impact on ARIEL scientific output

ARIEL Medical Isotope Targets

- Metal Gasket
- Welded End Cap
- H$_2$O Cooling Supply Channel
- Thorium Disks
- Inner Body w/ Cooling Fins
- Aluminum Outer Body
- Brass End Cap
- Ø ≈ 10 cm

~ 13 cm
ARIEL Medical Module

Beam Diagnostics
ISOL Target
“Medical Module”
Beam Dump Module

Pneumatic Pipeline
Leadscrew Coupling Actuator Mechanism
Engagement Rod
H₂O Coupling
Thorium Target

~3 m
~3 m

p⁺ Beam Diagnostics ISOL Target”
Medical Target Transfer Pipeline

- Hot Cell 2
- Irradiation Area
- Pneumatic Transfer Pipe
- p+
ARIEL Hot Cell Facility
ARIEL Hot Cell Facility

Cell 1
- Robatel Industries
- Module maintenance/repair
- Clean (non-contaminated) cell
- Commissioning → 2021

Cell 2
- Tender specs in development
- Integrated into existing facility
- Dirty (contaminated) cell
- Waste processing and removal
- Interface w/ medical transfer pipe
- Medical target isotope harvesting
- Target post-irradiation examination
Target Waste Stream

- Primary targets into Cell 1 from target hall
- Cell 1 in-cell hoist lifts target onto air-locked inter-cell transfer port tray
- Cell 1 manipulators push tray into air-lock
- Air-lock separates “clean” air in Cell 1 from “dirty” inert gas in Cell 2
- Cell 2 hoist lifts target from air-lock to work table
- Work table → locating pins → lockable rotation
- Target disassembled, separated into low and high active waste
Low Active Waste Stream

- Activated metals, low contamination (mSv/hr range)
- Lowered through double-door transfer system into 55-gallon drum
- Area under shelf remains “clean”
- Drum removed through Waste Transfer Door on pallet

Example DDTS – La Calhène DPTE Drumliner

Cell 1 & Transfer Ports – courtesy of Robatel Industries
High Active Waste Stream

- Irradiated target materials, high activation and contamination (Sv/hr range)
 - Uranium carbide
 - Tantalum
 - Silicon Carbide
 - Others, and new technologies

- Pyrophoric materials (ignition in air)
 - Target container opened using custom device
 - Target into apparatus for controlled oxidation
 - Once oxidized → target through smaller DDTS into PE container (ex. La Calhène DPTE 190)

- Post-irradiation target inspection and testing

Controlled Inert Gas Environment in Cell

Required to prevent spontaneous ignition
Waste Conveyor System

- Sealed high active waste conveyed from Cell 2 to Cell 1 for packaging
 - 5-gallon steel pails
 - Shielded transport flasks
- Under-shelf cell spaces connected
 - Cell 1 provided with removeable wall panels
- Conveyor must:
 - Disengage containers at DDTS
 - Lower containers
 - Shield under-shelf space
 - Move container between cells
 - Lift container into cell 1
 - Be maintainable
 - Be remotely operated
Medical Target Receiving Enclosure

- Interface with pneumatic transfer system
 - Send and receive medical targets
 - Sealed from hot cell environment
 - Manipulator access for target removal/insertion
 - Targets will be **HOT** after irradiation, extra shielding required for intermediate storage

Preliminary Dose Rate Studies

Cell 1 & Transfer Ports – courtesy of Robatel Industries
Medical Isotope Harvesting

- Irradiated thorium processed in chemistry module
 → 225Ac/225Ra multistage purification process R&D currently underway @TRIUMF & partners
 → Dissolve irradiated thorium in strong acid
 → Removal of 5-10 litres of active acid waste from Cell 2
 → Chemistry consumables passed in/out through north air-locked transfer port.
 → Process gases (nitrogen, helium, air, etc.)
Cell 2 – Other Features

In-cell lifting equipment
- Crane, hoist, etc.
- To lift loads heavier than manipulator capacity

Roof hatch
- Stepped to minimize radiation shine
- In-cell access for target hall crane

In-cell viewing cameras
- Pan-tilt-zoom, to complement operator viewing window

Cell shielding walls
- Minimum thickness → 23 cm Pb (or equiv. reduction factor)

Fire detection and response system
- To alert and respond to ignition of target material, etc.

Telemanipulators
- Minimum capacity → 22 kg (50 lb)

Operator platform

Shielding window

Cell 1 & Transfer Ports – courtesy of Robatel Industries
Thank you
Merci

Acknowledgments

Grant Minor, Josh Smith, Alex Gottberg, Ricardo dos Santos Augusto, Sam McEwen, Cornelia Hoehr, Paul Schaffer, Andrew Robertson, Gloria Botelho

www.triumf.ca
Follow us @TRIUMFLab