Force estimation and feed back control of the Servo Manipulator for the remote handling use in Hot Cells

56th Annual Meeting on Hot Laboratories and Remote Handling
HOTLAB 2019

S. Joseph Winston, D. Jagadishan, S. Sakthivel, N. Mahendra Prabhu, Deepak Kumar, S. Murugan, P. Selvaraj

Fast Reactor Technology Group,
Indira Gandhi Centre for Atomic Research,
Kalpakkam
CATEGORIES OF MANIPULATOR & USE OF MANIPULATOR IN HOTCELL

Articulated manipulators

Telescopic manipulators

Extended reach Telescopic manipulator

CATEGORIES OF MANIPULATOR & USE OF MANIPULATOR IN HOTCELL

3.2 electrical master-slave manipulator
manipulator reproducing the movements of the hand and arm of the operator by means of isokinematic master and slave arms with bilateral electrical position control (force reflection)

Note 1 to entry: The word “bilateral” refers to the property of the system to be indifferently moved by acting on the master arm or on the slave arm.

Note 2 to entry: The slave arm is generally mounted on a transporter (mobile).

Servo manipulator
• Operator gets a real feel of slave side
• Gantry mount makes extended work volume in the cell
• Iso-kinematic system
Servo Manipulator - Parameters

- Payload capacity: 15 kg
- Degrees of freedom: 10
- Cross Travel: 1200 mm
- Z - Axis: 425 mm
- Azimuth: ±170°
- Base rotation: ±45°
- Shoulder elevation: +60°/ - 90°
- Elbow elevation: +90°/- 45°
- Elbow rotation: ±170°
- Wrist rotation: ±170°
- Wrist elevation: +120° / - 45°
- Gripper opening: 90 mm
DESCRIPTION OF SERVO MANIPULATOR (SM)

• Modular design for easy mounting on Gantry
• Redundancy on DOF for dexterity
• Networked controller for synchronous motions
• Master-slave interconnected only through cables and no direct mechanical links – master can be conveniently placed in any desired location and slave work volume increased through Gantry mounts
• Real time Jacobian matrix computation and joint torques converted to manipulator forces
• Hard master slave synchronization through joint axis servo drives (low latency)
• 30% work volume overlap for both arms – Good performance of both arm interactive tasks
KINEMATIC MODEL OF SERVO MANIPULATOR

\[J = \frac{df}{dx} = \left[\begin{array}{c} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{array} \right] = \left[\begin{array}{cc} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{array} \right] \]

Forward kinematics:
\[\delta e = J \delta \theta \]

Inverse Kinematicis:
\[\delta \theta = J^{-1}[\delta e] \]

DH parameter
\(a_i \) – Link length
\(\alpha_i \) – Link twist
\(\theta_i \) – Joint angle
\(d_i \) – Joint z axis distance
Joint motor velocity to manipulator end effector velocity
Differentiating the Kinematic equation we get,

\[\dot{\mathbf{x}} = J \dot{\mathbf{\theta}} \]

Jacobian is a linear transformation, mapping joint speed to Cartesian speed

In this case J has been generated column by column; \(i^{th} \) column of Jacobian Matrix is

\[
c_i(q) = \begin{bmatrix}
0 \mathbf{k}_{i-1} \times & 0 \mathbf{d}_n
\end{bmatrix}
\]

\[
\begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{Z} \\
\dot{\phi}_x \\
\dot{\phi}_y \\
\dot{\phi}_z
\end{bmatrix} = \begin{bmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\dot{\theta}_3 \\
\vdots \\
\dot{\theta}_n
\end{bmatrix}
\]
Total manipulator work done in task space = manipulator work done in tooltip space.

\[F^T \delta X = \tau^T \delta \theta \]

\[\delta X = J . \delta \theta \]

\[F^T J . \delta \theta = \tau^T \delta \theta \]

\[F^T J = \tau^T \]

\[J^T . F = \tau \]

\[F = (J^T)^{-1} \cdot \tau \]

The state variables \(\theta, \dot{\theta}, \ddot{\theta} \) are measurable through rotary encoders.

Dynamic analysis using LaGrange equation

\[\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) - \left(\frac{\partial L}{\partial q} \right) = Q \]

Where Lagrangian \(L=T-V \)

\(T \) - Kinetic energy of the system

\(V \) - Potential energy of the system

\[M(\ddot{\theta}) + C(\theta, \dot{\theta}) + G(\theta) = \tau \]

Forces in the system

- payload,
- inertial force,
- friction in the joint,
- Coriolis force
- Gravity force on the manipulator
CONTROL LAYOUT OF SERVO MANIPULATOR

MASTER ARM

LEFT ARM
- Shoulder Rotation
- Shoulder Elevation
- Elbow Rotation
- Elbow Elev
- Wrist Rotation
- Wrist Elev
- Gripper

RIGHT ARM
- Shoulder Rotation
- Shoulder Elevation
- Elbow Rotation
- Elbow Elev
- Wrist Rotation
- Wrist Elev
- Gripper

EtherCAT Communication BUS

Cross Travel
- Azimuth
- Vertical
- Gantry

EtherCAT Communication BUS

SLAVE ARM

Control Panel
PC
MASTER SLAVE POSITIONAL FEEDBACK

- Mater side joint angle sensed and compared with slave axis. The difference is applied as slave motion command
- Drive level programming done to reduce latency
- The slave joint parameters like pulse per revolution (PPR) and Gear Radios are all pre-programmed into the respective joint axis servo drives
- Periodic synchronization trigger at drive level to do corrections even when there is an out of synchronization between master-slave during a power failure.

Master-slave positional synchronization
In the present study only the vertical component force F_y is applied on the master.

Slave arm loaded with known forces and the reflected force in the master measured and compared.

Equation:

$$F = (J^T)^{-1} \cdot \tau$$

$$\begin{bmatrix} F_X \\ F_Y \\ F_Z \\ M_X \\ M_Y \\ M_Z \end{bmatrix} = (J^T)^{-1} \begin{bmatrix} \tau_1 \\ \tau_2 \\ \tau_3 \\ \vdots \\ \vdots \\ \tau_n \end{bmatrix}$$

Diagram: EtherCAT Bus connecting all slave servo Drives.

Process: Compute Absolute angle (use PPR&GR), Compute Manipulator Jacobian, Compute the corresponding joint torques in master.

Steps: Joint Axis Encoder Position, Joint Axis Motor Current, Joint Axis Torque, Manipulator End effector force.
Table 2: Reflected force on the master arm

<table>
<thead>
<tr>
<th>Weight added in gripper (kg)</th>
<th>Reflected force in master (Kg) @ 4 orientations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0°</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>2</td>
<td>1.9</td>
</tr>
<tr>
<td>3</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>3.95</td>
</tr>
<tr>
<td>5</td>
<td>4.95</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8.1</td>
</tr>
<tr>
<td>9</td>
<td>9.15</td>
</tr>
<tr>
<td>10</td>
<td>9.9</td>
</tr>
<tr>
<td>11</td>
<td>10.9</td>
</tr>
<tr>
<td>12</td>
<td>11.75</td>
</tr>
<tr>
<td>13</td>
<td>12.7</td>
</tr>
<tr>
<td>14</td>
<td>13.75</td>
</tr>
<tr>
<td>15</td>
<td>14.95</td>
</tr>
</tbody>
</table>

Figure 6: Reflected force measurement on the master
SERVO MANIPULATOR – MASTER & SLAVE

Master

Slave
• Modular design of servo manipulator
• Real time Jacobian matrix computation to translate parameters back and forth between joint space and end effector space
• Joint space motor currents used to compute manipulator force
• Gantry mount design makes it flexible to be mounted for large task space applications
• Force limiting for applications that demand soft/tender handling

Thank You