Actinide behavior in biphasic alpha contaminated waste package

HOTLAB 2019

J. DELRIEU; J-L DUSSOSSOY; S. PEUGET
DEN/MAR/DE2D/SEVT/LMPA
Summary

I – Industrial context
 1. Initial waste characterization
 2. Objectives of the study
 3. PIVIC process
 4. Final waste package
 5. Qualification

II – Radioactive waste and vitrification process research laboratory
 1. Missions
 2. C18-C19 Hot cells
 3. L29 Solid characterization laboratory
 4. L30 Leachate and solutions analysis laboratory

III – Actinide behavior
 1. Non-radioactive mock up
 2. Thermal elaboration
 3. Sample preparation
 4. Imaging

IV – Conclusions and prospects
I. Industrial context
Industrial context: Initial waste characterization

- Intermediate Level – Long-Lived alpha contaminated waste

- Materials used in glove boxes of MOx production and spent fuel reprocessing plants (operations, maintenance, dismantling...)

- Incompatible with existing treatment processes without prior separation due to the heterogeneous nature of the waste (metallic and organic components)
Industrial context: Objectives of the study

- Conditioning of the initial waste in a package acceptable for deep geological disposal in National French Radioactive Waste Management Agency ANDRA facilities.

- Long term stability (destruction of the organic material).

- Volume reduction.

- Containement of radionuclides.

- No pre-treatment.
Industrial context: Qualification

Inactive laboratory trials
- Parametric study
- Gateway study

Actinide surrogate data collection

Laboratory-Technology Gateway: Upscaling surrogate behavior

Active-inactive gateway: Surrogate representativeness

Radioactive trial
- Parametric study with U
- Pu and U study (distribution and data)

Technological trials

Actinides localization in PIVIC waste package
Industrial context: PIVIC process

- Innovative one step thermal treatment process
- Coupling of existing technologies: plasma incineration and low-frequency induction melter
- Organic matter destroyed by incineration
- Ashes digested in glass fraction
- Metal components melted
- In-can process: no need of pouring system
Industrial context: Final waste package

- Compact bi-phasic metal glass package
- Strong volume reduction
- Metallic fraction below
- Glass fraction above containing ashes and actinides
- Clear demarcation between the phases
- Concrete added for the purpose of the can cutting
II. Radioactive waste and vitrification process research laboratory
Radioactive waste and vitrification process research laboratory: Missions

MISSIONS
- Studies on the incorporation mechanisms of radionuclides in nuclear waste conditioning matrices (glasses and glass-ceramics).
- Studies on the radiation effects on nuclear materials (conditioning matrices, spent nuclear fuel, corium...).
- Long-term behavior model development of nuclear waste material under interim storage or deep geological disposal conditions.
- Support to the dismantling/decommissioning activities by the characterization of highly radioactive materials.

ACHIEVEMENTS
- 2002: 1st study on 238Pu doped ceramic
- 2006: Contribution to the scientific report for the “Bataille” act
- 2009: Synthesis of the 1st 241Am and 244Cm doped glass-ceramics
- 2012: 1st leaching experiment under environmental disposal conditions and alpha radiolysis
- 2017: 1st leaching experiment on prototypical corium to support the Fukushima site
- 2019: 1st electronic microprobe mapping on High Level Waste for dismantling-decommissioning activities
Radioactive waste and vitrification process research laboratory: C18/C19 Hot cells

LEACHING TESTS
- Dynamic mode (Soxhlets)
- Static mode (Autoclave)
- 60 Co irradiator
- Furnace (1150°C)
- Gas phase chromatography

PHYSICAL MEASUREMENTS
- Optical microscopy
- RAMAN spectrometry
- Gamma scanning
- Mechanical properties measurements (hardness, Young modulus)
- Density measurements

PHYSICO-CHEMICAL ANALYSIS
- Calorimetry (thermal power, heat capacity)
- Thermal treatment furnaces (1500°C)

SAMPLE PREPARATION
- Cutting
- Embedding
- Polishing
- Grinding
- Sieving
- Micro core drilling

MATERIAL SYNTHESIS
Calcination/Vitrification process
High temperature furnace (1500°C)
Radioactive waste and vitrification process research laboratory: L29 Solid characterization laboratory

SEM-EDS mapping Prototypical Corium
- X-Ray Diffraction
- Scanning Electron Microscope-EDS
- Electron Probe Micro-Analysis

EPMA mapping Glass-ceramic
Radioactive waste and vitrification process research laboratory: L30 Leachate and solutions analysis laboratory

LEACHATE ANALYSES LABORATORY

- ICP AES
- Radiometry (α, β, γ)
- Kinetic Phosphorescence Analyzer (U)
- Ionic chromatography
- UV visible spectrometry
- Gas phase chromatography
- Chemiluminescence
- Carbon measurements
- Leaching tests in inert atmosphere
III. Actinide behavior

<table>
<thead>
<tr>
<th>Element</th>
<th>Symbol</th>
<th>Atomic Number</th>
<th>Mass Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actinium</td>
<td>Ac</td>
<td>89</td>
<td>227.026</td>
</tr>
<tr>
<td>Thorium</td>
<td>Th</td>
<td>90</td>
<td>232.038</td>
</tr>
<tr>
<td>Protactinium</td>
<td>Pa</td>
<td>91</td>
<td>231.036</td>
</tr>
<tr>
<td>Uranium</td>
<td>U</td>
<td>92</td>
<td>238.032</td>
</tr>
<tr>
<td>Neptunium</td>
<td>Np</td>
<td>93</td>
<td>237.048</td>
</tr>
<tr>
<td>Plutonium</td>
<td>Pu</td>
<td>94</td>
<td>244.064</td>
</tr>
<tr>
<td>Americium</td>
<td>Am</td>
<td>95</td>
<td>243.061</td>
</tr>
<tr>
<td>Curium</td>
<td>Cm</td>
<td>96</td>
<td>247.090</td>
</tr>
<tr>
<td>Berkelium</td>
<td>Bk</td>
<td>97</td>
<td>247.070</td>
</tr>
<tr>
<td>Californium</td>
<td>Cf</td>
<td>98</td>
<td>251.080</td>
</tr>
<tr>
<td>Einsteinium</td>
<td>Es</td>
<td>99</td>
<td>254.070</td>
</tr>
<tr>
<td>Fermium</td>
<td>Fm</td>
<td>100</td>
<td>257.095</td>
</tr>
<tr>
<td>Mendelevium</td>
<td>Md</td>
<td>101</td>
<td>258.102</td>
</tr>
<tr>
<td>Nobelium</td>
<td>No</td>
<td>102</td>
<td>259.101</td>
</tr>
<tr>
<td>Lawrencium</td>
<td>Lr</td>
<td>103</td>
<td>262.087</td>
</tr>
</tbody>
</table>

Periodic Table of Elements

[Periodic Table Image]
Actinide behavior: Non-radioactive mockup

- Elaboration parameters determined during numerous tests
- Base for comparison with radioactive sample
- Hafnium simulates the behavior of Uranium and Cerium simulates Plutonium
Actinide behavior: Thermal elaboration in hot cells

- Mixed metals + glass powder + MOx powder
- Proportions have been determined in non radioactive trials
- Melted at 1400°C under inert atmosphere
Actinide behavior : Sample preparation

- Multi phasic material : sampling difficult due to separation of phases during cutting

- 2 samples have been isolated, embedded and polished :
 - Glass fraction on top
 - Bottom of the crucible containing metal, glass and crucible interactions
- First optical images of the samples
Conclusions and prospects

- New IL-LL waste required an innovative solution for treatment and long term disposal.

- In-can Vitrification Incineration Process in development as a collaboration between Orano, CEA and ANDRA

- First radioactive sample with Uranium and Plutonium has been prepared.

- Radioactive samples are now being characterized to compare with surrogate behaviors
 - RAMAN spectroscopy and X-ray diffraction will help identify the different phases
 - Optical and scanning electron microscopy will determine the microstructure of those phases
 - Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy and electron microprobe analysis will be performed to chemically map the samples
Thanks

The authors would like to thank ORANO and ANDRA for their support in developing the PIVIC project in the frame of the French National PIA program.
Thank you for your attention

J. DELRIEU; J-L DUSSOSSOY; S. PEUGET; H-A. TURC; T. MARCILLAT; M. FAGARD; P. CHEVREUX; S. MOUGNAUD; B. CHARLES; L. CHAUVIN; S. MIRO; M. TRIBET; J-M. BOUBALS; M. DELAVILLE; A. LAPLACE-PLOQUIN