

The microstructure of post-irradiated A508-3 steel and its effects on Charpy impact energy

Lu Wu, Wei Zhang, Shaoyu Qiu, Xiaoyong Wu, Zhen Wang, Wen He, Bang Wen, Haisheng Zhang, Huajun Mo

¹ The First Institute, Nuclear Power Institute of China ² National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China

18th September, Helsinki

Contents

Reactor Pressure Vessel

Key issues:

Irradiation embrettlement

- ✓ One of the most important safety shield of the reactor
- ✓ Cannot change, determined the lifetime of the reactor

Severe conditions:

- > Neutron irradiation
- Multi-stress situation
- High temperature and thermal shock
- Water/steam corrosion

The Charpy V-notch impact energies of the A508-3 steel from the HFETR as a function of temperature for the un-irradiated and irradiated conditions at neutron fluence of 2.97 × 10¹⁹ n/cm²

The main reasons of the irradiation embrittlement of the RPV steel are:

- The precipitation of nanoscale atomic clusters (Copper, Nickel, Manganese, etc.)
- •The formation of dislocation loops inside matrix
- The segregation of Phosphorus atoms beyond boundary

[1] V. Slugena, A. Kryukov. Nuclear Engineering and Design 263 (2013) 308–312
[2]M.K. Miller, K.F. Russell, M.A. Sokolov, R.K. Nanstad. Journal of Nuclear Materials 361 (2007) 248–261
[3] M. Hern ández-Mayoral , D. Gómez-Brice. Journal of Nuclear Materials 399 (2010) 146–153

The impact energies of unirradiated and post-irradiated A508-3 steel under the same testing environment are unstable.

WHY?

Microstructure? Grain Size? Defects?

Charpy V-notch impact energy curve of A508-3 steel

Introduction

263J, 24°C

Charpy V-notch impact energy curves of A508-3 steel

Samples	Irradiation Temperature	Neutron fluence	Test temperature	Charpy V-notch impact energy
	T (°C)	(n/cm ²)	Т(℃)	E (J)
1#	290 ± 15	0	24	263
2#	290 ± 15	2.97×10 ¹⁹	0	213
3#	290 ± 15	2.97×10 ¹⁹	0	8

Zwick RKP450 Charpy impact testing machine

Leica MEF4A Optical microscopy inside hot cell

FEI Quanta 450 FEG field emission scanning electron microscope with EDS inside a cast iron cell

263J, 24℃

213J, 0℃

Unirradiated

3×10¹⁹n/cm²

 $3 \times 10^{19} n/cm^2$

8J, 0℃

SEM image of the fracture

263J, 24℃ 213J, 0℃ 8J, 0℃

Optical metallography(upper) and grain size(lower) images – No big differences between un-irradiated and post-irradiated specimens

263J, 24°C

Unirradiated

Optical images of morphology and distribution of defects(holes) – The lower the absorb energy is, the higher the number densities of defects!!!

1#, un-irradiated

Positions		Α	B	С
elem ents	Fe	0.08	-	3.00
	С	0.02	0.03	0.10
	0	55.42	56.56	-
	Al	44.34	29.89	0.27
	Mg	-	13.52	-
	Mo	-	-	1.38
	S	-	-	44.20
	Mn	-	-	42.74
	Ca	-	-	6.49
	Cr	-	-	0.25
	Ni	-	-	0.37
	Se	-	-	0.52
	Cu	-	-	0.68
	Р	0.13	-	-
	总计	100	100	100

- ✓ 3 kinds of non-metallic inclusions inside unirradiated specimen: Al₂O₃, MnS, and Al-Mg-O ternary phase (MgAl₂O₄)
- ✓ The boundary between non-metallic inclusions and the matrix is quite loose

1#, un-irradiated

2#, post-irradiated

3#, post-irradiated

Only 2 kinds of non-metallic inclusions existed in post-irradiated specimens: Al_2O_3 and Al-Mg-O ternary phase (Mg Al_2O_4)

3#, post-irradiated

The evidence of MnS disappearred in post-irradiated specimens: the enrichment of Mn and S element among the edge of holes.

Reasons:

Compare with Al_2O_3 and $MgAl_2O_4$, the melting temperature of MnS is quiet lower. MnS is easier to decompose under the hot peak during cascade. In addition, combine with the effect of irradiation enhanced diffusion, S and Mn atoms move to boundaries.

In the other hand, Mn atoms transmutation into Fe atoms by nuclear reaction, MnS decompose .

- Because of low Copper concentration (0.03 wt.%), very limited Copper clusters could be observed both in un-irradiated and post-irradiated samples
- ✓ Manganese and Molybdenum clusters exist after irradiation

Conclusions

- No obviously change in the bainite structure and grain size of the A508-3 steel could be observed by OM under this irradiate conditions (fluence of neutron is 2.97×10^{19} n/cm², and irradiation temperature is 290 °C±15 °C), which could not causing impact energy abnormally.
- ✓ The direct reason probably is the differences in fraction volume of the defects(holes) in the matrix, which formed during solidification process.
- ✓ The defects could be divided into two types, one is filled with layer-like Al₂O₃, MnS, and Al-Mg-O ternary non-metallic inclusions combining together, and the other is holes.
- ✓ Boundary between these non-metallic inclusions and matrix is quite loose, which is easily to decrease the impact toughness.
- Except MnS phase, the morphology and composition of the Al₂O₃ and Al-Mg-O ternary non-metallic inclusions in defects were not modified by neutron irradiation significantly under this irradiate conditions.

Conclusions

Next steps:

- ✓ EPMA observation, micro-composition analysis
- ✓ FIB +TEM observation, microstructure analysis
- ✓ Semi in-situ observation

Thank you for your attention!