Development of a Set-Up for the Detection of Failed Fuels in TAPS BWR Spent Fuels Storage Bay

J. L. Singh¹, N. Kumawat¹, A.K. Sinha², Sameer Bhat², K. Jayarajan³ and C. Dey³

¹Post Irradaition Examination Division Nuclear Fuels Group ²Centre for Design and Manufacture, Design Manufacture and Automation Group ³Division for Remote Handling and Robotics, Design, Manufacture and Automation Group

> Bhabha Atomic Research Centre Trombay, Mumbai-400085

When One Fuel Pin Fails

- Entire fuel assembly of 36 pins is discarded because of one leaky pin
- Material un-utilized
- 140 Kg of UO₂
- Enriched Uranium U²³⁵
- Shortage of Uranium in India
- Zirconium used for fuel pins
- Steel top and bottom tie plate
- Failed fuel assembly contaminates pool water

Identify the leaker, segregate, replace

BWR Fuel Assembly

- India has two units of BWR, each 200 MW(e), currently operating at 160MW(e)
- Reactor core has 284 fuel assemblies
- Control rods 69, cruciform type
- Fuel assembly consists of 36 fuel pins
- Arranged in a 6 x 6 square array
- Fuel assembly length 4.24 meters
- Fuel elements spaced by 7 spacer grid
- Distance between two grids 48.8 cms

BWR Fuel Elements

Fuel material Enriched UO₂

Average fuel enrichment U²³⁵ 2.24 W %

Fuel pellet diameter 12.24 ± 0.025 mm

Fuel pellet density 93% (T.D.)

Fuel column length 3658 mm

Fission gas plenum length 221 mm

Pellet to clad diameter gap 0.254 mm

Cladding material Zircaloy-2

Clad ID 12.51 ± 0.039 mm

Clad wall thickness 0.89 mm

Clad OD 14.29 mm

Element Length 3892.6 mm

Water Log Detection

- Based on detection of water inside fuel pin entered through the leak site
- Leak at any place along the length
- Water in pellet clad gap in a failed pin known as water logging
- Un-failed pin pellet clad gap contains gases
- Water settles down near bottom plug
- UT-Wafer probes above bottom plug weld

Development of UT Technique

Problem with Pulse/Echo Technique

Reflection dominant ~ 88% energy back

Transmission is only ~12%

Transmitted energy lost in the coupling inside is ~1dB attenuation in the failed fuel pin

Misalignment can give 8-10 dB attenuation hence, poor S/N ratio

Poor Signal to Noise Ratio in Pulse-Echo

Multiple pulse echo back wall pattern

Attenuated back wall decay pattern

Transmit/Receive Technique

- Pair wafer probes inserted into the inter element spacing
- Transmitter probe sends ultrasound in the clad through coupling by pool water
- Receiver on the opposite side
- In failed pin beam travels further through the water coupling in pellet clad gap and lost in UO₂ pellet

Probes at centre of fuel rod

Signal at centre from failed rod

Home position of Probes out of fuel assembly

MOTION CONTROL PANEL

25 m long cable

Single ultrasonic wafer probe

Three pairs of probes in fixture subassembly

Calibration sub-assembly

Top Tie Plate Dismantling

Removal of Lock Tab Washer, Top Tie Plate, spring and fuel rod

Requirement during Testing

- 1. Motor of the probe movement system should be water tight
- 2. Alignment of the probes
- 3. Centre and offset positions of each pin should be known
- 4. Probe arm thickness should be less than the gap between two pins
- 5. Fuel assembly should be stable
- 6. One probe assembly and one probe movement controller should be kept as standby

Conclusion

- 1. The developed failed fuel detection system is highly reliable. Currently to segregate failed fuel assembly
- 2. It has good signal to noise ratio
- 3. Signals are recorded at three points of a fuel rod
- 4. Leaky fuel pin is rechecked during reversal of probe
- 5. Linear motion control is accurate up to 5 μ m with feed back control
- 6. Failed fuel identification, removal and substitution has been demonstrated

Thanks for your patience

