

Electron and in-cell optical microscopy study of irradiated 20%Cr: 25%Ni: Nb stainless steel

Presented by: Suzy Morgan

On behalf of I Vatter, A Grant, JFW Thompson (NNL); M Levy (EDF Energy)

Introduction to CAGR

- UK 9 sites- 7 CAGR, 1 Magnox, 1 PWR
- Commercial Advanced Gas-cooled Reactors (CAGR)
- CO₂ coolant + solid graphite moderator
- Hollow ceramic UO₂ pellets clad with 20Cr/25Ni:Nb stainless steel alloy
- Each fuel pin is 1m length
- Pins grouped in bundles of 36, in 3 rings= 1 Fuel Element
- Graphite "sleeve"
- 8 Elements make up 1 stringer (articulated)
- High temperature cladding in comparison to LWR

PIE Techniques- NNL

Non destructive:

- Visual examination
- Dimensional Measurement
- Profilometry
- Gamma scanning (isotopic and total)

Destructive:

- Puncturing for fission gas sampling and analysis
- Fission gas analysis (mass spectrometry)
- Density
- Raman spectroscopy
- Thermal properties
- Optical microscopy- polarised, fluorescent and BF
- Electron optical examination (SEM & TEM)
- Micro cXRT (FIB)

Optical Microscopy

Modified components coloured red

Ergolux

Leica DMI5000

Scanning Electron Microscopy

• FEI Quanta 200 FEG SEM with Oxford Instruments SDD EDX detector

CAGR Cladding Material

Cladding:

- 20%Cr: 25%Ni: Nb stainless steel (austenitic polycrystalline face centred cubic (fcc) solid solution alloy)
- Contains dispersed Nb(C) precipitates
 - In reactor (with increased T) these precipitates coarsen
 - M₆C/M₂₃C₆, G phase (Ni₁₆Nb₆Si₇), complex carbonitrides, silicides
 - Only observable using electron microscopy
- Sigma (o) phase formation also occurs (triple points)
 - o phase can be used to indicate operational T

CAGR Cladding Material

Cladding:

- Radiation induced segregation (RIS)
 - Result of irradiation at low temperatures (<550°C)
 - Migration of Cr away from the grain boundaries-sensitisation (similar to thermally aged steels).
 - (Ni,Si)-rich precipitates form (10nm to 60nm) similar to the formation of γ' in other hi Ni alloys
 - Manifests as optically irresolvable 'dark' phase
 - Can also be used to estimate operational temperatures

LOM image

Previous work

Transmission electron micrographs showing the microstructural changes as a function of time at 650°C. (a) 100 h, (b) 500 h, (c) 5000 h, (d) 15,000 h.

TEM images- unirradiated steels

Current work

Reactor irradiated CAGR cladding

- 20Cr: 25Ni: Nb
- In-reactor Temperature range ~400≤700°C
- Carbon dioxide (CO₂) atmosphere
- ~30GWd/tU burn-up
- ~2500 days in core (60,000hrs)

CAGR Microstructures

CAGR Features

Outer Cladding Surface:

- Protective layer Cr₂O₃ [1]
 - Between 2-8 μm
 - Thin, adherent
 - May contain
 - silica, oxide, spinel
- Carbonaceous deposition [2]
 - Coolant additives CH4 and CO breakdown
 - Deposit builds on some can surfaces
 - Impairment of heat transfer from fuel to coolant
 - May nucleate on small surface oxide pits [3]

CAGR Microstructures

Cladding to fuel interface:

Cladding Study

Cladding grain boundaries:

- Some localised enrichment at clad-fuel interface
- Uniform through bulk

BSE

Further work

- WDS on clad-fuel interface- comparison with EDX to eliminate contribution of Fe-55 to Mn
- Quantitative TEM on smaller samples
- Non-active TEM
- Non-active FIB

Acknowledgements

EDF Energy Generation Ltd (UK)

Ray Graham and Gary Blacklock (PIE technicians)