

The microstructure of post-irradiated A508-3 steel and its effects on Charpy impact energy

<u>Lu Wu</u>, Wei Zhang, Shaoyu Qiu, Xiaoyong Wu, Zhen Wang, Wen He, Bang Wen, Haisheng Zhang, Huajun Mo

¹ The First Sub-institute, Nuclear Power Institute of China
² National Key Laboratory for Nuclear Fuel and Materials, Nuclear Power Institute of China

18th September, Helsinki

Contents

Reactor Pressure Vessel

Key issues:

Irradiation embrettlement

- ✓ One of the most important safety shield of the reactor
- ✓ Cannot change, determined the lifetime of the reactor

Severe conditions:

- > Neutron irradiation
- Multi-stress situation
- ➤ High temperature and thermal shock
- **➤** Water/steam corrosion
- **>**

The chemical compositions of LWR RPV steels (wt.%)

Materials	C	Si	Mn	S	<u>P</u>	Cr	Ni	<u>Cu</u>	Mo	V
American	≤0.2	0.15/0.4	1.20/1.5	≤0.02	≤0.02	<0.25	0.40/1.0		0.45/0.6	<0.05
A508- Ⅲ	5	0	0	0	0	< 0.25	0.40/1.0	-	0	≤0.05
French	≤0.2	0.10/0.3	1.15/1.5	≤0.00	≤0.00	< 0.25	0.50/0.8	≤0.08	0.45/0.5	∠0.01
16MND5	0	0	5	8	8		0		5	≤0.01
Japanese	≤0.2	0.15/0.3	1.15/1.5	≤0.03	≤0.03		0.40/0.7		0.45/0.6	
SQV2A	5	0	0	5	5	-	0	-	0	-
Russian	0.12/	0.17/0.2	0.20/0.6	~ 0.01	~ 0.01					0.10/
15×2НМФ	0.13/		0.30/0.6	≤0.01	_	1.8/2.3	1.0/1.5	≤0.08	0.5/0.7	0.10/
A1	0.18	7	0	2	0					0.12
Chinese	≤0.2	0.10/0.3	1.15/1.6	≤0.00	≤0.00	<0.25	0.50/0.8	~0.00	0.43/0.5	,
A508-III	2	0	0	5	8	≤0.25	0	≤0.08	7	/

The Charpy V-notch impact energies of the A508-3 steel from the HFETR as a function of temperature for the un-irradiated and irradiated conditions at neutron fluence of 2.97×10^{19} n/cm²

The main reasons of the irradiation embrittlement of the RPV steel are:

- The precipitation of nanoscale atomic clusters (Copper, Nickel, Manganese, etc.)
- The formation of dislocation loops inside matrix
- The segregation of Phosphorus atoms beyond boundary

Charpy V-notch impact energy curve of A508-3 steel

Besides the irradiation embrittlement, the impact energies of un-irradiated and post-irradiated A508-3 steel under the same testing environment are unstable.

WHY?

Metallography?
Grain Size?
Defects?

Process

263J, 24℃

Charpy V-notch impact energy curves of A508-3 steel

Samples	Irradiation Temperature	Neutron fluence	Test temperature	Charpy V-notch impact energy	
	T (°C)	(n/cm ²)	T (°C)	E (J)	
1#	/	0	24	263	
2#	290 ± 15	2.97×10^{19}	0	213	
3#	290 ± 15	2.97×10^{19}	0	8	

Zwick RKP450 Charpy impact testing machine

Leica MEF4A Optical microscopy inside hot cell

FEI Quanta 450 FEG field emission scanning electron microscope with EDS inside a cast iron cell

SEM image of the fracture. Both for un-irradiated and post-irradiated samples, high impact energy means big deformation of the fracture(good impact toughness).

Optical metallography(upper) and grain size(lower) images – No big differences between un-irradiated and post-irradiated samples

- ◆ Observe after polishing directly(black points, defects). Optical images of morphology and distribution of defects/holes: Both for the un-irradiated and post-irradiated samples, the lower the absorb energy is, the higher the number densities of defects.
- ◆ The holes in not formed during irradiation, but probably formed during solidification process. Need further investigation.

Positions		A	В	C	
	Fe	0.08	-	3.00	
	C	0.02	0.03	0.10	
	0	55.42	56.56	-	
	Al	44.34	29.89	0.27	
	Mg	-	13.52	-	
	Mo	-	-	1.38	
,	S	-	-	44.20	
elem	Mn	-	-	42.74	
ents	Ca	-	-	6.49	
	Cr	-	-	0.25	
	Ni	-	-	0.37	
	Se	-	-	0.52	
	Cu	-	-	0.68	
	P	0.13	-	-	
	总计	100	100	100	

- ✓ The type of non-metallic inclusions can be easily distinguished by EDS. 3 kinds of non-metallic inclusions inside uniradiated specimen: Al₂O₃, MnS, and Al-Mg-O ternary phase (MgAl₂O₄,Spinel)
- ✓ The boundary between non-metallic inclusions and the matrix is quite loose

1#, un-irradiated

2#, post-irradiated

3#, post-irradiated

Only 2 kinds of non-metallic inclusions existed in post-irradiated samples: Al_2O_3 and Al-Mg-O ternary phase $(MgAl_2O_4)$

The evidence of MnS disappearred in post-irradiated samples: the enrichment of Mn and S element among the edge of holes.

Reasons:

- ✓ Compare with Al₂O₃ and MgAl₂O₄, the melting temperature of MnS is quite lower. MnS is easier to decompose under the hot peak during cascade. In addition, combine with the effect of irradiation enhanced diffusion, S and Mn atoms move to boundaries.
- ✓ In the other hand, Mn atoms transmutation into Fe atoms by nuclear reaction, MnS decompose.

- ✓ Because of low Copper concentration (0.08 wt.%) , very limited Copper clusters could be observed both in un-irradiated and post-irradiated samples
- **✓** Manganese and Molybdenum clusters exist after irradiation

Conclusions

- No obviously change in the bainite structure and grain size of the A508-3 steel could be observed by OM under this irradiate conditions (fluence of neutron is 2.97×10^{19} n/cm², and irradiation temperature is $290 \text{ C} \pm 15 \text{ C}$), which could not causing impact energy abnormally.
- ✓ The direct reason probably is the differences in fraction volume of the defects(holes) in the matrix, which formed during solidification process.
- The defects could be divided into two types, one is filled with layer-like Al_2O_3 , MnS, and Al-Mg-O ternary non-metallic inclusions combining together, and the other is holes.
- **Boundary** between these non-metallic inclusions and matrix is quite loose, which is easily to decrease the impact toughness.
- \checkmark Except MnS phase, the morphology and composition of the Al_2O_3 and Al-Mg-O ternary non-metallic inclusions in defects were not modified by neutron irradiation significantly under this irradiate conditions.

Conclusions

Next steps:

- **✓ EPMA observation, micro-composition analysis**
- **✓FIB** +TEM observation, microstructure analysis
- **✓** Semi in-situ observation

Thank you for your attention!