Idaho National Laboratory

Radial Deconsolidation of Irradiated AGR-3/4 Compacts at Idaho National Laboratory

HOTLAB 2018

Philip Winston, John Stempien and Grant Helmreich

Idaho National Laboratory Idaho Falls, Idaho USA 83415

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA 37831

AGR-3/4 Experiment

- TRISO Fuel HTGR
 - PyC/SiC clad particles,
 UO₂/UC2 fuel, He cooled, not
 UO₂, stainless clad CO₂ cooled
- Study Fission Product Transport in graphite and graphitic material
- Normal Coated TRISO particles have minimal Fission Product release
- AGR-3/4 incorporated 80 DTF (designed to fail) particles among 7500 particles in each experiment capsule
- Capsule contains series of graphite or graphitic annuli (rings) through which FP diffuse

- Capsule
- Stainless Steel external
- Fuel in 4 compacts on axis
- Graphite/graphitic diffusion rings
- Different materials, temperatures

Designed To Fail Particles

- Each compact ~1875 intact particles
- Normal coating
 - OPyC 41 μ
 - SiC 33.5 μ
 - IPyC 40 μ
- 20 UCO kernels arranged on compact axis, coated with only 20 µ of pyrocarbon
- Each compact 12.3 mm OD × 12.3 mm long
- Particles held together in compact by graphitic matrix material

Irradiation AGR-3/4

Initial Enrichment 15%

Maximum TAVA ~1350

Maximum Burnup 15% (Essentially all initial fissile material)

Time Averaged, Volume Averaged Temperature (TAVA)

Post Irradiation Separation

- Deconsolidation Electrochemical decomposition of matrix
- Leach 2-24 hour leaches in boiling concentrated HNO₃
- Oxidize OPyC 72 hours in air at 750C
- Leach 2-24 hour leaches in boiling concentrated HNO₃
- Chemical analysis
 - Gamma Spectrometry
 - Gamma emitting fission product concentration
 - Mass Spectrometry
 - U/Pu, selected isotopes
 - Sr separation beta emitter by gas proportional counting

Deconsolidation

Breaking down compact matrix to release particles

- Matrix Deconsolidation
 - Electrolytic <10 W and 4 M HNO₃

- Cathode (reduction):
- $HN(V)O3 + e^{-} \rightarrow 2 N(IV)O_2 + OH^*$
- Anode (oxidation):
- $C(0) + 4 OH^* \rightarrow C(IV)O_2 + 2 H_2O + 4 e$

Radial Deconsolidation

- Rotating compact in contact with electrode and acid
- Remove ~1 mm layer from circumference
- Repeat until shaft is contacted
- Complete axis deconsolidation by conventional complete dissolution
- Purpose Measure gradient of fission product concentration in matrix
 - Determine if gradient of particle burnup exists

Development work by Grant Helmreich, ORNL

- Determined that conductive epoxy was an effective way to mount the compact to the rotating shaft
- Determined that using direct current through the shaft resulted in asymmetric breakdown of compact
- Determined that 4 N HNO₃ most effective
- Developed MatLab video imaging technique for non-contact measurement of compact diameter

INL Development

- Scale down system to work in small hot cell
- Develop remote method for gluing compact to rotating shaft
- Test and confirm MatLab
 FrameGrabber routine for determining diameters through hot cell window

Hollow Shaft For glue delivery

Compact after gluing in Hot Cell

INL Scaled Unit

- Use 12 V DC 10 rpm gearmotor
- Drive gears 1:1 ratio
- Shaft-compact-gear mounted on handle for manipulator operation
- Main structure Delrin
- Contact components Pt-Rh anode, screen Pt cathode
- Handling components HDPE

Image Analysis Joint Effort J. Stempien, INL and Grant Helmreich, ORNL

- Using Nikon D5000 DSLR with Nikkor 80-400 mm telephoto
 - Full 400 mm zoom magnification
- Working approximately 2 m from window

Frame Grabber Measurement

- Direct through window
- Video of rotating shaft/compact
- Uses green background to distinguish object of interest
- Uses known 6 mm diameter of rotated shaft as reference standard
- Compacts manually measured prior to shipment to AL Hot Cell

Observations

- In hot cell environment where electronics are at risk due to radiation, and custom modified measurement systems are expensive and operationally problematic, external video interpretation is an effective alternative.
- HDPE lacks the precision for tightly fit machined parts. Despite not being rated for high radiation, Delrin machines well and has held up in most operations.

References

- Stempien, J. D., Radial Deconsolidation of AGR-3/4 Compacts 3-3, 12-1, and 12-3, INL/EXT 17-43182 September 2015.
- Helmreich, Grant, Fred C. Montgomery, and John D. Hunn, Development of a Radial Deconsolidation Process, ORNL/TM 2015\699, December 2015.

Thanks for your kind attention

Contact Philip.Winston@inl.gov

