Poster session Wade Karlsen, VTT 1 slide in 2 min each # Magnus Göhran European Spallation Source ERIC, Fagerström Industrikonsult AB The European Spallation Source Active Cells Facility - Challenges in Construction - HOTLAB 2018 # The European Spallation Source Active Cells Facility – Challenges in Construction – HOTLAB 2018 - Mechanical versus civil construction tolerances - 2 different worlds meet at the same location - Re-bar design and casting sequences - 500 kg/m³ re-bar, 1.3 m thick high density concrete walls - Uneven concrete surfaces - Casting formworks shift and swell differently during casting - Installation of cast in items in tight spaces - Clashes between cast in items and formworks Alex Wagner United Kingdom Atomic Energy Authority Size Reduction Equipment in the ESS Active Cells Facility ## ESS ACF Size Reduction Equipment UK Atomic Energy Authority Alex Wagner - UK Atomic Energy Authority A variety of large radioactive components shall require size reduction and handling operations within the European Spallation Source (ESS) Active Cells Facility. A systems engineering approach was conducted, producing a function-based set of requirements for various size reduction equipment. Size reduction equipment includes: - 1. Machining Station (accepting tender submissions) - 2. Shaft Cutting Station (tenders in review) - Auxiliary tools (shear cutter, orbital cutter, bolt removal tools) Main difficulties of cutting technologies required: - 1. Radiation hardness and remote maintainability - 2. Dry cutting (no coolant liquids) - 3. Large cut depths and long cut paths Mika Helin Platom Oy PLATOM's Expertise and Capabilities to Support Construction and Operation of Hot Cell Facilities # PLATOM's Expertise and Capabilities to Support Construction and Operation of Hot Cell Facilities - Platom has 20 years of experience in delivering consultancy services, components and systems for nuclear industry in several countries - The evaporation and waste treatment (EWT) box for radioactive waste water treatment from Hot Cell operations was delivered to VTT in spring 2018 - Earlier a drying cabinet for liquid waste volume reduction was supplied to Forsmark NPP - These deliveries further expand the services Platom can offer to the international nuclear industry # Akinori Sato Japan Atomic Energy Agency The preliminary study for safety design of JAEA's Radioactive Material Analysis and Research Facility "Laboratory-2" dedicated to fuel debris analysis at TEPCO's Fukushima Daiichi Nuclear Power Station site The preliminary study for safety design of JAEA's Radioactive Material Analysis and Research Facility "Laboratory-2" dedicated to fuel debris analysis at TEPCO's Fukushima Daiichi Nuclear Power Station site Akinori Sato*, Ichiro Kosaka & Naoya Kaji Japan Atomic Energy Agency(Okuma Analysis and Research Center) • In 2011 May, 1F accident occurred. · According to Mid-and-Long-Term Roadmap for decommissioning of 1F NPS, fuel debris retrieval from the first unit will start in 2021. • JAEA is designing the Radioactive Material Analysis and Research Facility (Okuma Analysis and Research Center) adjacent to the 1F site. • In **Laboratory-2**, fuel debris is mainly handled and analyzed to characterize chemical and mechanical property. • The practically conservative assumption is requested for the safety design. The radiation shielding evaluation and the criticality safety evaluation Through the preliminary evaluations, the feasibility of safety design of Laboratory-2 is implied. Source: http://www.tepco.co.jp/index-j.html Ondrej Srba Research Centre Rez Ltd. Preparation of experiments at CVR Hot-cell ## Preparation of experiments at CVR Hot-cell (S Ondřej Srba ## Laurent Velnom European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security An overview of the Remote Handling solutions and equipment at JRC Karlsuhe's Hot Cells facilities #### An overview of the Remote Handling solutions and equipment at JRC Karlsuhe's **Hot Cells facilities** L. Velnom, A. Busto, J. Marconato European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, Postfach 2340, D-76125 Karlsruhe, Germany The Radiochemistry Hot Cells The 'Alpha-Gamma' intervention team within the unit Waste Management at JRC Karlsruhe develops, adapts and operates various Remote Handling technologies taking the highest care with respect to contamination monitoring and radioprotection regulations. In total we operate and maintain about 90 Master Slave Manipulators (MSM) of various sizes and types together with several Robot arms for heavy duty or complex operations. Heavy duty SAMM power manipulator MA 23 with force feedback in Decontamination HC R&D on Grippers Various types of engineered bootings Minor Actinide Laboratory Intervention on MA Lab HC ## Patrik Sandström Studsvik Nuclear AB Self-threading electrical discharge machine - hot cell modifications and the first year of active machining ## V. Revka Institute for Nuclear Research A remote technique for a preparation of tension test specimens from the irradiated round bars # A remote technique for a preparation of tension test specimens from the irradiated round bars (P08) Volodymyr Revka Institute for Nuclear Research, Kyiv, Ukraine - ✓ Round bars have been put in the surveillance capsules instead of standard tension specimens (Rivne NPP-1) - ✓ Preparation of tension specimens from irradiated round bars is needed - ✓ A remote lathe with computer control has been developed - ✓ A brief description of equipment - ✓ Application of equipment for machining specimens. # Cameron Howard Canadian Nuclear Laboratories (CNL) Using Novel Small Scale Mechanical Testing to Link the Mechanical Properties and Deformation Mechanisms of High-Dose Activated Inconel X-750 ## Using Novel Small Scale Mechanical Testing to Link the Mechanical Properties and Deformation Mechanisms of High-Dose, Activated Inconel X-750 Canadian Nuclear | Laboratoires Nucléaires Cameron Howard, Vineet Bhakhri, Chris Dixon, Heygaan Rajakumar, Clinton Mayhew, Colin Judge Canadian Nuclear Laboratories (CNL), 286 Plant Road, Chalk River, Ontario KOJ 1J0, Canada Pre-test Post-test 332 1 μm intergranular fracture 2 μm trans-granular channel fracture # ZHANG Xiang-yang China Institute of Atomic Energy High Energy X-ray Study on Nondestructive Detection of Fuel Assemblies Nuclear fuel assembly is the core of the reactor, in order to further study the performance of the fuel assemblies, we have conducted nondestructive detection research of assembly with high energy X-ray for several years, and experimential detection device was developed. Schematic diagram of system structure Computered tomography image of simulated nuclear fuel assembly # Lei yang Nuclear Power Institute of China Research on Closed-end Burst Testing of Irradiated Fuel Cladding Tube #### Research on Closed-end Burst Testing of Irradiated Fuel Cladding Tube Designs for automatic loading Automatic sealing and locking device Measuring principle The curve of pressure-time Blasting pressure: over 200MPa Measurement accuracy: 5µm Continuous deformation measurement device Guo li-na China Institute of Atomic Energy The research on oxide dispersion strengthened (ODS) ferritic steel by chemical method Kiho Kim Korea Atomic Energy Research Institute Remote Metal Fuel Slug Fabrication System Based on Injection Casting # Remote Metal Fuel Slug Fabrication System Based on Injection Casting Kiho KIM and Jeong-Yong PARK Korea Atomic Energy Research Institute - ◆ The Korea Atomic Energy Research Institute (KAERI) has been researching a technology for fabricating TRU (Transuranium) metal fuel using TRU ingot produced from Pyroprocessing. - ◆ Such TRU metal fuel fabrication processes should be conducted in a fully remote manner at a hot-cell because of a nature of a radioactivity of TRU ingot. All the in-cell processes and equipment operations should be fully conducted using remote handling tools. - ◆ To remote fuel fabrication technology development, we constructed the Remote Fuel Fabrication Mock-up (RFFM) located in the Fuel and Material Test Facility at KAERI this year. - ◆ RFFM is an efficient means to test and verify an engineering-scale metal fuel fabrication using non-radioactive materials from the remote operation and maintenance viewpoint in advance before TRU ingots are used at hot-cell. - ♦ RFFM consists of an engineering-scale metal fuel slug fabrication system and a remote handling system. The engineering-scale metal fuel slug fabrication system is one to fabricate metal slugs based on an injection casting. The remote handling system is a means to make the metal fuel slug fabrication possible in a remote manner. - We demonstrate the constructed RFFM and its capability examined through the remote fabrication using copper conducted in RFFM. Remote copper slug fabrication results based on injection casting are also presented. **Full Scale Graphical Model of RFFM** # Miho Suzuki Japan Atomic Energy Agency Sample preparation techniques for post irradiation examinations in the Reactor Fuel Examination Facility # Sample preparation techniques for post irradiation examinations in the Reactor Fuel Examination Facility M.Suzuki, Y.Kimura, M.Takano, N.Mita 2 Precise hydrogen analysis of cladding tube How to remove the pellet without damaging the cladding tube? ③ SEM observation of small sample How to stand a fragile sample? ① Analysis for TMI-2 debris How to hold the various shaped sample? Please visit Poster P14 # Ryan Devlin National Nuclear Laboratory Development of Laser Ablation Inductively Coupled Plasma – Mass and Optical Emission Spectrometry Methodologies for Elemental Analysis in a Medium Active Cell Environment #### Development of Laser Ablation Inductively Coupled Plasma – Mass and Optical Emission Spectrometry Methodologies for Elemental Analysis in a Medium Active Cell Environment #### Ryan Devlin¹, Clive Lythgoe² & Simon Chenery³ ¹National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, CA20 1PG, UK ²Sellafield Ltd, Sellafield, Seascale, CA20 1PG, UK ³British Geological Survey, Environmental Science Centre, Keyworth, Nottingham, NG12 5GG, UK ## Anabelle Lopez ## CEA-DEN, Service d'Études des Matériaux Irradiés, CEA, Université Paris-Saclay Nuclearization projects of a tomographic atom probe and of an electropolishing machine for researches on neutron irradiated materials at the atomic scale SA304 16MnD5 # NUCLEARIZATION OF A TOMOGRAPHIC ATOM PROBE AND AN ELECTROPOLISHING MACHINE FOR NEUTRON IRRADIATED MATERIAL STUDIES AT THE NANOMETRIC SCALE IN CEA/Paris-Saclay LECI HOTLAB FACILITY # 304L Stainess steel irradiated with Fe ions: Segregation around dislocation loops E. Paccou (PhD), B. Tanguy The phenomena controlling materials behavior under irradiation are on the <u>atomic scale</u> → Impact mechanical behavior at the components scale → Essential to understand ageing of these materials and to improve the nuclear safety. So how? With a <u>nuclearized</u> Tomographic Atom Probe and <u>nuclearized</u> sample preparation methods anabelle.lopez@cea.fr kimberly.colas@cea.fr Nota :This work profited from a French government grant managed by the National Agency of Research under the program "Investments for the future" (ref. ANR-11-EQPX-0020 ## Olivier Dugne CEA, Nuclear Energy Division, Research Department on Mining and Fuel Recycling Processes Nuclearized Raman microscope coupled with a hot-stage: new tool to study (U,Pu)O2-x fuel microstructure # New Raman microscope setup: L26, ATALANTE facility, France Horiba© IHR-320 Raman spectrometer with 2 lasers: 532 nm & 660 nm Confocal microscope equipped with 2 exchangeable turrets dedicated to: • *Ex situ* microstructural observations (optical & Raman): equipped with 4 Olympus© objectives (x5 to x100). the micro-indenter device and a Raman calibration objective. • *In situ* high temperature Raman experiment: equipped with 3 Mitutoyo© long working distance objectives (x5 to x50) and a Raman calibration objective. Glovebox dedicated to µ-Raman Motorized stages: x, y, z and sample rotation # New Raman microscope setup: L26, ATALANTE facility, France See dedicated poster for details and illustrations #### Ex situ experiments $(Ce_{0.85}Y_{0.15})O_{2-x}$ Raman map - Imaging (optical & Raman) - μ-Hardness (Vickers) *In situ* experiments #### Heating wire - Up to 2000°C - Controlled pO₂ - Powders - Sintered samples (1.5x2 mm²) # Maho Iwasaki Japan Atomic Energy Agency Application of ICP-MS to analysis of nuclear fuel debris and radioactive wastes #### Application of ICP-MS to analysis of nuclear fuel debris and radioactive wastes Maho Iwasaki^{1,2}, Soichi Sato^{1,2} Japan Atomic Energy Agency, Ibaraki 319-1195, Japan ² International Research Institute for Nuclear Decommissioning Tokyo 105-0003, Japan IRID ☑Time-consuming Low analysis capability #### **Our missions** Set up facilities supporting the decommissioning of 1F. Perform analysis of radioactive waste samples and fuel debris from 1F. Samples are measured at laboratory-1 and laboratory-2. At the beginning: 200 samples/year, 38 nuclides. ☑Shorter analysis time High analysis capability #### ICP-QQQ-MS(Agilent 8900) Demonstration of Zr selective analysis Q1: Quadrupole 1 (The first mass filter) Q2: Quadrupole 2 (The second mass filter) ORS: Octopole Reaction Cell System, collision/reaction cell EM: Electron multiplier detector Regarding Zr measurement, it is possible to eliminate the isobaric interferences using ICP-QQQ-MS with suitable "reaction gasses, NH3 in He". Guy Cornelis Nuclear Materials Science Institute, SCK•CEN Design, development, and installation of hot cell instrumentation for Spent Fuel Autoclave Leaching Experiments (SF-ALE) #### Poster P19 Radionuclide release from spent nuclear fuel under geological repository conditions is required for realistic safety assessment - The FIRST-nuclides project with a primitive set-up, 2012 2015 - Fuel dissolution under fully controlled conditions, 2017 → How, when, why? See the poster for details! Stéphane Brémier European Commission, Joint Research Centre, JRC-Directorate G – Nuclear Safety and Security The Decommissioning and Waste Management programme of the European Commission Joint Research Centre ## The Decommissioning and Waste Management programme of the European Commission Joint Research Centre The programme aims to eliminate both historical and future liabilities at all nuclear sites of the JRC #### JRC-Petten High Flux Reactor Auxiliary buildings & infrastructure #### JRC-Karlsruhe Since 1961 Hot Cells, commercial and exotic' spent fuels Glove box laboratories Since 1965 #### JRC-Geel Accelerators Since 1965 Glove box laboratories, effluent water systems #### JRC-Ispra Since early 60s 2 Reactors & ancillary labs Hot cells facility Waste management Liquid effluents, Cyclotron, legacy wastes... The JRC Nuclear Decommissioning and Waste Management Programme was formally launched in 1999 (COM(1999)114, Council and European Parliament). # Petr Švrčula Research Centre Rez Ltd. Transportation capabilities of hot cell facility #### Transportations capabilities of the hot cell facility #### Petr Švrčula, Ondřej Srba, Maria Zimina - Transport cask TERA 300 type B(U) - Domestic and international transportation - Shielding abilities 300 TBq of 60Co - Horizontal and vertical loading Impact deformation calculation Inner canal operated in cell Capsule model **TERA 300** # Amir Hushyar Transnubel, Dessel, Belgium First transport campaign of new type B(U) packaging for hotlabs #### **TNB 170** - Allowed contents - fresh or irradiated UOX/MOX fuel - sealed or unsealed radioactive sources - neutron sources of type Xx-Be - FANC license B(U) - H/V loading and unloading - Tilting, docking et extension tools | Dimensions | Outer Dimensions | Inner Dimensions | |------------|------------------|------------------| | Diameter | 600 mm | 48 mm | | Length | 921 mm | 201 mm | | Empty Weight | 592 kg | |--------------|--------| | Maximum Load | 2,5 kg | ## Sunggeun Kim Korea Atomic Energy Research Institute Mechanical test of spent fuel at KAERI-PIEF