

Dissolution and solvent extraction for the purification of Sr-89 from irradiated yttria target in Hot cells

¹S.Rajeswari, ¹T. Kalaiarasu, ¹A. Amalraj, ¹R. Karunakaran, ²J.Vithya, ²Debasish Saha, ²K.Sundararajan, ¹P.Manoravi and ^{1,2}R.Kumar

¹ Mini & Hot Cell Section, ² Radio analytical Chemistry & Spectroscopy Studies Section, Analytical Chemistry & Spectroscopy Division, MC&MFCG, IGCAR, Kalpakkam-603102.

As a Radioisotope in medical applications for therapeutic treatment

- \triangleright 89 Sr : pure β- emitter, t ½ = 50.5 days : Energy ~ 1.5 MeV
- Pain palliative medicine for bone metastases.
- > Strontium biological analogue to calcium & high affinity for metabolically active bone.
- > Normal dose 40 60 μCi / kg of body weight
- ➢ Biological t ½ = 14 days in normal bone: Exceeds 50 d in osteoblastic metastases.
- > As IV injection 4 mCi /4 ml per injection as (89SrCl₂ in 0.1 N HCl, pH: 6-7)
- ➤ US FDA approved ⁸⁹ Sr, ³²P & ¹⁵³Sm as candidates: ³²P & ¹⁵³Sm found to result in mild to severe bone marrow suppression

Production Principle

Fast Reactor route:

⁸⁹Y(n,p)⁸⁹Sr

Advantage:

Product with very high specific activity possible: 19 kCi ⁸⁹Sr/g of Sr

Sr produced is easily separated from Y target as product.

Present Study: 89Y(n,p)89Sr in FBTR

> Sr-89 Production Principle

Other products: Sr^{90} t $\frac{1}{2}$ = 29 years and Yttrium 88 - t $\frac{1}{2}$ 106 days

Yield (Ci/g of Y) for 30 days at flux : 2.4×10^{15} n cm⁻²s⁻¹

⁸⁹Sr: 0.011 :: ⁸⁸Y: 0.005 :: ⁹⁰Sr: 1.98 x 10⁻¹⁹(Based on computed cross section)

Experimental

Yttria target preparation: Sintered Yttria Y_2O_3 : 1g/pellet prepared and characterized for bulk density and Na compatibility test.

Irradiation in FBTR:

Campaign No.	Position of irradiation	No.of days of irradiation (days)	Material of Pellet encapsulation tube	Solvent extraction route followed	Activity of Sr ⁸⁹ obtained (mCi/g)
ı	Centre Core	72	SS	ТВР	19
II	4 th Ring	118	Quartz	CE	2
III	5 th Ring	30	Quartz	ТВР	0.9
IV	5 th Ring	45	SS	CE	In process

Transportation of irradiated yttira

La-Calhene loaded in to lead cask

HP checking the dose level

Unloading the lead cask

Y₂O₃ pellets were posting in to Hot cell through EXTP.

Quartz tube cutting device

Developed in-house for cutting QT in Hot cell with MSM

In case of SS casing, the laser cutting carried out in Radio Metalurgical Laboratory of IGCAR and capped before transportation

Dissolution

 $Y_2O_3 + 6HNO_3 \rightarrow 2Y(NO_3)_3 + 3H_2O$

Dissolver: Titanium vessel of 350 ml inner volume.

25 nos of irradiated yttria pellets dissolved in 150 ml of 9 M /11 M HNO₃ under reflux condition for 24 hrs at 120° C

> Vessel Dim: 70mm OD: 35mm ID & 300 mm height:

Thickness 6 mm

"O" rings used: EPDM or Viton

Base heater with cylindrical heat insulator and silicone insulated RTD outputs inside the cell.

Multi –tasking table

Multi task work table

- * Vice
- *Dissolver holder
- *lid open cum
- closure arrangement
- *Solution transfer system
- *Separation fixture

Temperature calibration of the vessel

For heating up to 150 °C pressure raised up to 5.203 kg/cm ²

$$\Delta$$
 T (outer – inner) = 25°

Solvent Extraction

Tri-Butyl Phosphate Route

$$Y(NO_3)_3 + 3 TBP \rightarrow [Y(NO_3)_3 . 3 TBP]$$

$$Y(NO_3)_3 + 3 TBP \rightarrow [Y(TBP)_3 . HNO_3]$$

The bulk yttrium was separated by 100% TBP

Bulk Yttrium to organic phase and strontium in aqueous phase.

Crown Ether Route

$$Sr^{2+}$$
 (NO₃)₂ + C.E.(Dt.BuCh18C6) \rightarrow Sr(Dt.BuCh18C6) (NO₃)₂

The bulk yttrium was separated by 0.2M CE in octonal

Strontium to organic phase and Yttrium in aqueous phase.

Flowchart for separation of strontium (TBP Route)

Flowchart for separation of strontium (CE Route)

Transfer of Dissolver Solution

- Dissolver solution transferred to a beaker & volume measured.
- No evaporation loss
- No residue inside the dissolver vessel.

100% Dissolution without residue

Solvent Extraction Steps

Organic transferred in to the bottle

Stirring unit

Solution transferred in to separating funnel

Interface **c** position

Collection of Aqueous and Organic

Strontium phase

Phase separation

Further Purification Steps

List of radioactive impurities formed during irradiation

Isotope	Route	Source	
Y-88	89Y(n,2n)88Y	_	
Rb-86	89Y(n,α)86Rb	Target material	
Tb-160	159Tb(n,γ)160Tb	Rare Earth impurities in the target material	
Ce-139	138Ce(n,γ)139Ce		
Ce-141	140Ce(n,γ)141Ce		
Eu-154	153Eu(n,γ)154Eu		
Zn-65	64Zn(n,γ)65Zn	Binder used in pellet preparation	
Co-58	58Ni(n, p)58Co		
Mn-54	54Fe(n, p)54Mn	Activation products of S.S	

Further Purification Steps (NRCS)

Impurities in Strontium after SE separation (TBP Route)

Aq. Soln. after TBP extraction with impurities in 0.1M HNO₃

Loaded on to Cation Exchange Column: DOWEX 50W X 8 resin (100-200 Mesh size) Conditioned to 0.1M HNO₃ (FR: 0.3 ml/min)

Elution with 1 M HNO₃ for selective removal of Sr

Elution with 3 M HNO₃ for removal of Y from the column

CE Route:

CE being highly selective to Sr, the purification steps involved are less.

$$Sr^{2+} (NO_3)_2 \xrightarrow{800} SrO \xrightarrow{} SrCl_2$$

Qualification for medical application

Specifications for ⁸⁹SrCl₂ for use as bone pain palliation

Property	Value		
Appearance	Trasnparent colourless solution		
рН	4.0 – 7.0		
Radionuclides purity (% 89Sr)	> 99.6		
Total beta impurities (%89Sr)	< 0.2	89661	
Gamma emitting radionuclides (%89Sr)	< 0.4	89SrCl ₂ Solution obtained using the	
⁹⁰ Sr activity relative to ⁸⁹ Sr activity (% ⁸⁹ Sr)	< 2.3 x 10 ⁻⁴	above procedure	
Specific activity (MBq/mg Sr)	3.5 – 3.6	has qualified the	
Radioactive concentration (MBq/mL)	37.5	requirements	
Chemical Purity, overall (%)	≥ 99.8%		
Al	< 2.0		
Fe	< 5.0		
Pb	< 5.0		
Assay of strontium chloride (mg/mL)	10.8 – 19.4		
Sterility	Sterile		

