

LIBS: a tool for identification of fuel pin failure by monitoring fission gases

Materials Chemistry & Metal Fuel Cycle Group

Indira Gandhi Centre for Atomic Research

(*Email: pmravi@igcar.gov.in)

³He counter

Fission Gas Monitoring

***** Gamma Spectroscopy for detection of these FGs in nuclear reactor

- * γ signal from FGs get submerged with intense γ radiation from ²⁴Na & ⁴¹Ar
- All radioactive isotopes of FGs have relatively short half-life (except ⁸⁵Kr, t1/2 = 10.7 y).
- ***** Typically isotope analysis of FGs is required at ppt level in Ar.
- ***** Fission yield for ⁸⁵Kr is ~40 times less than that of total Xe

> Need for an alternative technique for the on-line detection of FFP

Advantages of LIBS

- Sensors: field portable using fiber optics for analysis at remote location
- Multi-element techniques irrespective of the state of the sample
- **Sensitive to µg ng sample**
- Measurement is unaffected by high background radiation.

≻Nd:YAG laser

- **Wavelength: 1064 nm,**
- Energy: 390 mJ for He, 200 mJ for Kr & Xe
- *****Pulse width: 10 ns
- ***** Detector: 180 to 1030 nm
- Two mass flow controllers: for FG & UHP Ar to LIBS chamber

Calibration for He

***** The non-overlapping peak at 587.4

nm

Correlation coefficient (*R*²): 0.992

***** LOD = $3\sigma/S = 3$ ppm

*** IP** = 24.59 eV

Interpretation

- For Xe & Kr, ppb level LOD value is achieved
- **COD** value (3 ppm) of LIBS for He is higher
- ***** He being an inert gas has higher ionization potential, 24.59 eV.
- He intensity increases ~ 10 times by doubling the laser energy from 200 to 390 mJ.
- Hence, LIBS with high power laser may possibly decrease the LOD value for He
- Solution Sector Will also contribute in this direction to lower the LOD value

Conclusions

- This method is suitable for analysis at remote location, laser can be guide through portable fibre optics & the emission lines can also be collected & delivered to spectrometer through fiber optics
- * LIBS is successfully employed for identification of Kr, Xe & He.
- ***** The calibration for Kr, Xe & He fits linearly with a good R^2 value.
- **COD** value for Kr, Xe & He : 30, 40 ppb & 3 ppm respectively
- Further work is being explored to reduce the LOD value.

