

Spatial profile studies of

Nuclear material burn-up

Laser Ablation-Ionization

P. Manoravi

N. Sivakumar, M.P. Antony, M. Joseph, K. Anathasivan

Mini & Hot Cell Section

Radio Chemistry Laboratories (RCL)
MC&MFCG, IGCAR, Kalpakkam-603102, INDIA

Email: pmravi@igcar.gov.in,

Ph# ++91-44-27480500-Extn 24032

Burn-up measurements

Chemical Dissolution Method

- Dissolution
- Chemical Separation
- Mass Spectrometer Analysis
- Traditional, ASTM Prescribed
- Spatial Profiling not possible
- ☐ Time consuming & Labour intensive
- Sample to be brought to laboratory

Proposed Laser Ablation

- Avoids Dissolution
- Avoids Chemical Separation
- Mass Spectrometer Analysis
- New
- Spatial Profiling is possible
- Quick & Direct sampling
- Laser taken inside Hot Cells

Pulsed Laser - A Tool for analytical sampling

Method -1

Deposit Thin films inside Hot Cell Dissolve films in nitric acid

Analyze dissolved films in mass spectrometer

High Power Nanosecond Laser Pulse

- Laser Pulse strike material surface
- ☐ Thermal & non-thermal transfer of energy
- Following Physical Process Occurs
- (i) Evaporation (Laser heating)
- (ii) Electron & Ion ejection
- (iii) Particulates & atomic clusters ejection
- (iv) Plasma light emission

Physical Process of Laser Ablation

- (i) Evaporation (Thermal Process Heating)
 - Neutral atom & molecules ejection.
 - Vapour composition governed by partial pressure of vaporizing species.
 - Temperature 3000 7000K (ns pulsed laser heating of refractory materials).
- (ii) Electron & Ion ejection
- (iii) Particulates & atomic clusters ejection
- (iv) Plasma light emission

Laser Vapourization -Mass Spectrometer (using QMS)

Physical Process of Laser Ablation

- (i) Evaporation (Thermal Process Heating)
- (ii) Electron & Ion ejection
 - Laser produced lons are used.
 - Time of Flight Mass Spectrometer.
 - Spatial profiling / surface chemical & isotope mapping.
 - Quick Burn-up measurements.
- (iii) Particulates & atomic clusters ejection
- (iv) Plasma light emission

Laser ablation - Time of flight Mass spectrometer

¹⁰B Isotope measurement in Irradiated B₄C

Spatial Profile of ^{10}B Isotope consumption in Irradiated B_4C

Laser-Mass Spectrometer (TOF) 0.00 -0.05 Number of atoms in 10 µl: Intensity(V) U= 1.06e19 Nd= 4.6e17 Nd-143=5.57e16 -0.15Nd-146=7.86e16 Sm=4.79e17 La=2.99e17 Ce=2.93e17 -0.20 -0.2590 100 110 120 130 Time(µs) (a) Intensity ratio (UO₂*/143NdO*) 160 Linear Fit 0.00 148 [Sm+Nd]O 140 Intensity ratio of UO2*/143NdO* 120 -0.05 100 Intensity(V) Burn-up -0.10 measurement 20 -0.15 -800 1000 1200 104 102 103 100 101 Atoms ratio of (U/143Nd) in the sample solution Time(µs) (b) 10 pmravi@igcar.gov.in

Which laser?

At What Fluence?

Lower Wavelength & Lower Pulse duration are better!

Higher fluence is better!
However, Very high fluence is bad

Physical Process of Laser Ablation

- (i) Evaporation (Thermal Process Heating)
- (ii) Electron & Ion ejection

(iii) Particulates & atomic clusters ejection

- Chip Off (broken from surface)
- Sub-surface boiling-condensation
- Sub micron size
- Ensures exact target chemical composition
- Perfect for ICP plasma digestion
- Sampling input for ICPMS -> LA-ICPMS
- Spatial Profiling / Chemical & isotope mapping
- (iv) Plasma light emission

- Vapour Back Deposition (ambient pressure).
- Particulates: not back deposited.
- Particulates around 0.5 micron size good for ICP Plasma "digestion".
- Low laser fluence favours vapour.
- High laser fluence promotes particulates.

kV 6.0 1500x SE 9.5 Si FILM 193 S1

Physical Process of Laser Ablation

- (i) Evaporation (Thermal Process Heating)
- (ii) Electron & Ion ejection
- (iii) Particulates & atomic clusters ejection

Mass Spectroscopy

(iv) Plasma light emission (Optical Spectroscopy)

- Laser Induced Breakdown Spectroscopy (LIBS).
- Laser plasma light captured by CCD Detector through Spectrometer, after "plasma cooling".
- Solid / Liquid / Gas samples
- Spatial Profiling / Surface Chemical mapping.
- Spatial isotope mapping?
- Fiber Optics allows "Easy" Glove Box / Hot Cell adptation.

LIBS for Active Sample Analysis

LIBS Sampling & Optics

Laser Ablation Sampling for ICPMS

ICP-AES

Mini Cell Facility (In Tandem with Hot Cell Facility) In Radio Chemistry Laboratory (IGCAR – Kalpakkam)

LIBS Spectrum of Nd, La, Sm, U in Nitric Acid

Fission products in HLLW (Liquid) pmravi@igcar.gov.in

Fission Gas analysis (Gas)

17

Conclusions

Quadrupole Mass Spectrometer **QMS** - Partial Pressure

Time of Flight Mass Spectrometer **TOF-MS** -Isotope & elemental ratio

ICP - MS

-Elemental Analysis

Laser Ablation Sampling

LIBS

-Elemental Analysis

Spatial Profiling in Solid Samples

Solid, Liquid, Gas Samples

Pulsed Laser Evaporation (Laser Ablation under thermal process)

- Quantity of ablated mass
 - Amount of ablated mass depend on laser energy non-linearly
 - » irradiance, wavelength, pulse width
- Composition (Chemistry) of ablated mass
 - Composition of ablated mass is different from the solid sample
 - Composition of ablated mass and sample can be the same under particular laser conditions

10⁴/T(K)

70% Cu, 30% Zn

50% Cu, 50% Zn

19

30% Cu, 70% Zn

1/T

Boron isotope ratio under high laser power density

Using higher laser power > 108 W/cm²

Distance from Centre of substrate

SIMS Studies of thin film