

Electron Probe MicroAnalysis for Nuclear Science

Mona P. Moret, Anne-Sophie Robbes, Carl Henderson, Shekhar Uchagaonkar, CAMECA

HOTLAB 2019

September, 2019

10 September 2019

Acknowledgment

Thanks to **Pranesh Sengupta** from BARC, Mumbai for sharing his experience with us.

Outline

- EPMA Introduction
 - Brief EPMA Intro
 - SXFive TACTIS and Skaphia
 - Wavelength Dispersive Spectrometry
- Waste management work at BARC on non-shielded EPMA
- Conclusion

The World Leader in Elemental and Isotopic Micro & Nanoanalysis

Electron Probe Micro Analysis: EPMA

Determine concentration of element

Show distribution of these elements in solid specimen

- Direct measurement
- Non destructive technique
- True quantitative analysis for wide materials needs
 Covers the whole periodic table from Lithium
- 100ppm (0.01wt%) detection limit (heavy elements)
- 300 to 500ppm (0.05wt%) detection limit (light elements)

Field of view: 1.3mm x 1.3mm Stage Motion

Acquisition time: 7h 10 keV, 600 nA 650 x 650 pixels 100 ms per step

By courtesy of Piotr Dzierzanowski Academy of Sciences Warsaw, Poland

Generated signals

- Inelastic interactions generate:
 - Secondary electrons (SE): E_K <50eV (convention)
 - Cathodoluminescence (CL) (light emission): ~eV
 - Continuum x-ray radiation (Bremsstrahlung): 10eV-100keV
 - Inner-shell ionization (characteristic X-rays, Auger electrons): 10eV-100keV
- Elastic interactions:
 - Backscattering electrons (BSE): $50eV < E_K < E_0$

Electron Probe Micro Analysis Physical Principles

Why make a shielded EPMA?

Characteristic X rays:

- X ray Energy depends of the element
- Number of X rays function of the composition

Bremsstrahlung radiation : Spectrum background

A radioactive material triggers

X-ray generation without the electron beam ON

- → Specimen activity creates additional background
- → CAMECA shields EPMA for these specific applications

Shielded and non-shielded instrumentation

Standard EPMA: SXFiveTACTIS

- Standard sample
- Low activity samples

Shielded EPMA: SKAPHIA

- HOT samples (max of 111 GBq at an energy of 0.75 MeV.)

EPMA: Basic Components

- Electron Column
- X Ray Spectrometer
- Vacuum Chamber
- Automation System

5 WDS for TACTIS and 4 WDS for SKPAHIA : optimized quantifications

TACTIS

Configuration with 5 vertical WDS and 1 EDS

Each spectrometer / channel can host up to 2 to 4 crystals, acting as energy filter

Large filters allow faster collection time

Configuration with 4 vertical WDS and 1 EDS

	2d (nm)	Shape	Counter pressure	10		20		30		40		50		60		70		80		90			
TAP	2.576	J	LP	9	F 15P			25Mr	1	41N	b			57	La			80Hg					
LTAP	2.576	JS	LP	9	F 15P			25Mr	1	41N	b			57	_a			80Hg					
Ext.TAP Ext LTAP	2.576	J JS	LP	80) 15P			25Mr	1	41N	b			57	La			80Hg					
PET	0.8762	J	LP or HP (better)		1	4Si 2	25Mn			38	3Sr				65Tb		7	3Та					
LPET	0.8762	JS	LP or HP (better)		1	4Si 2	25Mn			38	Sr				65 T b		7	3Та					
LiF	0.4027	J	LP or HP (better)				21 S	C	37RI	b			527	e									
LLiF	0.4027	JS	LP or HP (better)				21 S	С	37R	b			52	Ге									
(L)PC0	4.5	J	LP	7N 11N:	a																		
(L)PC1	6.0	J	LP	6C 9F																			
(L)PC2	10.0	J	LP	5B 8O						Advantages of CAMECA High Intensity crystals: P/B ratio is the same for small and large crystals													
(L)PC3	20.0	J	LP 4B	le B						• N													
L Boron	14.5	J	LP	5																			
L Nitrogen	8	J	LP	7 N																			

Crystals:

Counter Pressure: LP: low pressure

K lines

EDS versus WDS A different league in terms of energy resolution CAMECA SCIENCE & METROLOGY SOLUTIONS

EDS: 121V energy resolution on the Mn

WDS: 20eV on the Mn

WDS EPMA: ideal for traces / peak resolution CAMECA

LPET

Resolution of Uranium M-beta from Thorium M-gamma

Resolution of Uranium Malpha from lead M-beta

24 eV difference peak to peak

In irradiated nuclear fuel analysis, the most important elements to take into consideration are U and Pu as well as desintegration elements such as americium (Am), curium (Cm), and to a lesser extent, xenon (Xe) and Rare Earth Elements (REE).

BARC Waste management HLW - Liquid

- High level nuclear liquid waste
- → Select adequate Barium borosilicate glass for sulfate
- Selection of suitable glass matrix is challenging: EPMA is part of the suite of instruments to analyze and select the matrix.
- Homogeneity / chemical durability / pouring temperature
- Use simulated waste
- EPMA: assess chemical homogeneity of the glass sample

Barium Borosilicate glass – a potential matrix for immobilization of sulfate bearing high-level radioactive liquid waste. C.P. Kaushik et al., **Journal of Nuclear Materials** 358 (2006) 129-138

Phase identification in BBS glass

15

Science & Metrology Solutions

Elemental mapping
+
Overlay
→ Phase
identification
and distribution

BARC Waste management HLW - Solid

- High level nuclear metallic solid waste
- → Target Deep geological repository
- →India chose the melting route
- → Evaluation of alloy composition identification for immobilization of radioactive Zr and stainless steel.
- →Considered Zr-Fe binary phase diagram as a pseudo binary to represent representative of Zircaloy-2-stainless steel 304 L.
- Preparation and investigations of several binary / ternary / quaternary alloys for cross checking.

Metallurgical characterizations of Fe-Cr-Ni-Zr base alloys developed for geological disposal of radioactive hulls, N. Das et al, **Journal of Nuclear Materials**, 420 (2012) 559–574

Summary

- EPMA: Quantification of elements in a solid specimen: can be used in the characterization suite of instruments for nuclear projects on hot and cold sample
- 2D elemental and phase mappings
- Rely on WDS for steady quantification
- Main strength is trace analysis measurements
- India is a strong customer of EPMA instruments with roughly 25 active systems
 - → On going deliveries at BARC and IGCAR.

Thank You

and

Dhanyavad!!!

