Characterization of Neutron Irradiated CANDU Inconel X-750 Garter Springs Via Lift-Out, Three-Point Bend Tests

Cameron Howard

Outline

- 1. Background
- 2. Motivation
- 3. Specimen Preparation Methods
- 4. In-Situ Three-Point Bend Testing
- 5. Mechanical Data
- 6. Post Test STEM Observations
- 7. Summary
- 8. Future Work

Background

- CANDU reactor design
 - D₂O moderator & coolant -> natural U fuel
 - 380-480 hot pressure tubes housed in low pressure cold calandria tanks
 - separated & supported by Inconel X-750 garter springs (~1200-1500 in a reactor !!!)

robotic online refueling

New In-Service

Pressure Tube

M. Griffiths. "The Effect of Irradiation on Ni-containing Components in CANDU® Reactor Cores: A Review." AECL Nuclear Review Vol. 2 Num. 1 (2013).

Background

- Irradiation effects on Ni superalloys in CANDUs
 - naturally 68% ⁵⁸Ni

$$^{58}Ni + n -> ^{59}Ni + \gamma$$
 (1)

59
Ni + n -> 56 Fe + 4 He (2)

59
Ni + n -> 59 Co + 1 H (3)

59
Ni + n -> 60 Ni + γ (4)

M. Griffiths, et al. 2013, "Degradation of Ni-alloy Components in CANDU Reactor Cores", submitted to 16th Int. Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Asheville, North Carolina, USA, August 11-15, 2013.

Background

Unirradiated Inconel X-750 garter springs

M. Griffiths, D. Poff, Z. Yao and K. Huang, 2013, "Performance of Ni alloy Components in CANDU Reactors", published in Proceedings of Int. Conf. on Materials Science & Technology(MS&T'13), Montreal, Quebec, Canada, October 27-31, 2013.

Element	Concentration (wt%)	
Al	0.4-1	
С	.08	
Co	1	
Cr	14-17	
Cu	0.5	
Fe	5-9	
Mn	1	
Ni	70	
S	0.01	
Si	0.5	
Ti	2.25-2.75	
Nb + Ta	0.7-1.2	
Solution Treatment	1093-1204 °C	
Precipitation Hardening	732 ± 14 °C for 16.5 hrs, air cool	

Grain Structure

 $d \approx 12 \pm 8 \mu m$

EBSD

Kikuchi Band Contrast

Motivation

- Springs removed from CANDU-6 reactors after 14 service years exhibit severe intergranular failure upon handling
 - excessive He bubble accumulation on GBs

C.D. Judge et al. Journal of Nuclear Materials 457 (2015) 165–172

Motivation

 Profound T effects (6 o'clock/pinched/low T vs. 12 o'clock/non-pinched/high T)

Motivation

 0.7 mm thick -> difficult + expensive to quantify mechanical properties w/ conventional testing & get good statistics

presumed weakest GB causes failure

- Use *Small Scale Mechanical Testing* to produce σ vs. ϵ to quantitatively compare:
 - mechanical properties differences caused by T effects (6 o'clock vs. 12 o'clock)
 - matrix strengths vs. GB strengths

 Extend quantitative picture of mechanical properties degradation to all nickel alloy power reactor components

Specimen Preparation Methods

 Two initial "stock" foils FIB milled, lifted out, mounted in TEM grids and shipped to UC Berkeley

Top View

Specimen Preparation Methods

 Three point bend specimens manufactured using a homemade 90° mount with a Ga⁶⁹⁺ FIB in a FEI Quanta 3D FEG at the UC Berkeley BNC

Specimen Preparation Methods

 Each three point bend specimen removed from "stock" foil and mounted across pre FIB fabricated bridge testing area using Kleindiek Nanotechnik manipulator and FIB cleaned to final dimensions

Pre-Test EBSD

In Situ Three Point Bending

 Displacement controlled tests performed at 15 nm/s loading and 30 nm/s unloading using Hysitron PI 85 Pico

Indenter

Initial Mechanical Data: Analysis

• Convert recorded F vs. D curves to σ vs. ϵ using the following:

$$\sigma = \frac{3 F L}{2 b d^2}$$

$$\varepsilon = \frac{6 D d}{L^2}$$

 σ = stress at midpoint (MPa)

 ε = strain in outer surface at midpoint

F = load at midpoint (N)

D = displacement at midpoint (mm)

d = beam height (mm)

L = beam length (mm)

b = beam width (mm)

• Fit linear elastic portion and apply 0.2% offset, intersection is

Initial Mechanical Data: Results

GS3-12 High Temperature (GB): 4 testsGS3-6 Low Temperature (Sxx): 2 tests

	GS3-6	GS3-12
σ_y [MPa]	1561 ± 12	1871 ± 77
ε _γ [%]	3.4 ± 0.5	1.6 ± 0.3

Post Test STEM Observations (BF)

Summary

- developed novel Small Scale Mechanical Testing technique for quantitatively characterizing reactor components (Inconel X-750 garter springs) with challenging geometries using tiny amounts of material!
- measured bulk matrix properties (σ_y) of GS-6 and GS-12 in good agreement with hardness testing
 - GB effects yet to be determined

Future Work

• Obtain a full sample matrix: GS3-6, GS3-12, and unirradiated three point bend tests that both contain GBs and do not contain GBs in order to compare the effects of GBs, T, and n radiation on σ_y and ductility.

EBSD on unirradiated Inconel X-750

- TEM at NCEM on deformed bars
- Lift Out Tensile Tests to measure GB strength
- He implantation & mech. tests of unirradiated Inconel X-750 at different doses

Acknowledgements

Robert Beier **Grant Bickel** Malcolm Griffiths Colin Judge Don Metzger Mark Paulseth

Laboratoires Nucléaires Canadian Nuclear Laboratories Canadiens

James Madden **Brandon Miller**

David Frazer Peter Hosemann Stephen Scott Parker

CANDU Owners Group Inc.

