DEVELOPMENT OF ENGINEERING SCALE PYROPROCESSING FACILITY – PRIDE

HOTLAB 2015

Sep. 30, 2015

Ilje, Cho

Outline

- Background
- **Development of PRIDE**
- **Operation**
- **Summary**

2

Background

Background

- The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology since 1997, which is considered one of the promising fuel cycle options in Korea.
- Pyroprocessing is an electrochemical recycling technology to recover valuable resources (U, TRU, etc.) from spent fuels in molten salt media at 500~650°C.
- To demonstrate engineering scale pyrocessing and to evaluate the technical feasibility of pyroprocessing, KAERI constructed a mock-up facility, named PRIDE (PyRoprocess Integrated inactive DEmonstration facility)

Purposes

- To demonstrate the engineering-scale integrated pyroprocessing experiments of all the processes using depleted uranium or simulated fuels
- To find scale-up issues of pyroprocessing equipment, system engineering studies, remote operation and maintenance, advanced safeguards, waste transfer, etc.

4

PRIDE (PyRoprocess Integrated inactive DEmonstration Facility)

Overview

- Reuse of discarded U-conversion facility after decontamination and remodeling
- Milestone : Design('07~'08), Installation('09~'12.6), Test-run & Operation('12.7~)

Main feature

- Environment : Air (glove-box, 1st floor), Ar (air-tight cell, 2nd floor)
- Ar-cell: Dimension L40.3 x W4.8 x H6.4 m, Impurity(moisture & oxygen) < 50ppm
- Integrated pyroprocessing equipments (17 windows each equipped with 2 MSM)

Development of PRIDE

Decontamination of Old Facility

- The existing uranium conversion plant (UCP) at KAERI site have been selected for PRIDE (Pyroprocess Mock-up Facility)
- UCP had been decontaminated for several years to decrease the radioactivity level
 - Decontamination of concrete walls (< 0.4 Bq/cm²)
 - Decontamination of stainless steel by ultrasonic
 - Decontamination of carbon steel by arc melting

Process Flow Diagrams of PRIDE

Design and Construction of PRIDE

Argon Cell	 Design and Evaluation of Large Argon Cell Structure Design of leak-tight large argon cell structure Manufacturing lining and installation Install cell structure and welding inspection 						
Argon systems	 Argon System(Inert atmospheric system) Design and Evaluation Establish the operation and design requirements Make technical specifications of argon supply, circulation, cooling, and exhaust systems Install argon systems into PRIDE 						
Cell operation equipments	 Development of Cell Operation Equipments Large transport lock system Small transport lock system Crane and hoist Feed-through and maintenance system Auxiliary operation equipments (window, light, gravity tube, etc) Install operation equipments into PRIDE 						
Utilities	 Utilities Design and Evaluation Develop the operation and design requirements Make technical specifications of HVAC, cooling water system, RMS, E & C, etc. Install utilities into PRIDE 						

(Cell Structure)

(Argon Systems)

(Utilities)

[Isometric section view of PRIDE]

- Cell equipment: 'A' through 'F'
- Remote handling systems: 'G' through 'J'
- In-cell monitoring systems: Not shown

Cell equipment provide useful means necessary for functioning the argon cell.

Viewing Windows

- Provide direct in-cell information or situation
- 17 on front wall (A), 5 on rear wall (A-1)

Transfer Lock Systems (TLS)

- Unique channels for connecting in-cell and out-of-cell
- Small TLS (B): transferring small, light materials or tools
- Large TLS (C): transferring large, heavy materials and components, equipment or devices

Gravity tubes (D)

- Load small specimens or small tools into the cell
- Two on the left- and right-hand sides of the front wall

Small/Large TLS closed

Small TLS opened [0.9x0.3x0.25 (LxWxH) m]

Large TLS opened [ф2.6x2.3 m]

Gravity Tube

Feed-throughs (E)

- Means to supply utilities from the out-of-cell to the in-cell

- Various types depending on the utilities required

Argon utility system (F)

 Supplies argon gas into both the in-cell and processing equipment through feed-throughs

 Keeps the required in-cell pressure to allowable level of - 50 to 20 mmH₂O, an in-cell temperature of 25 to 40 °C, and the concentrations of oxygen and moisture below 50 ppm

In-cell lights

- Provide lightening in the argon cell
- Sixty-eight 400W high pressure sodium lamps

Feed-throughs

Argon cel

Air cell

A-1

Argon utility system

In-cell lamps

12

Remote handling systems make processing equipment remotely operable and

maintainable inside the cell.

- 3-ton in-cell overhead crane (G) with a 1-ton auxiliary
 - Provides remote handling capabilities over the entire in-cell
- 3-ton blister (H)
 - Lifts the overhead crane trolley or the BDSM trolley
 - Loads it into the large TLS for maintenance when damaged,
- Master-Slave Manipulators (MSMs, I)
 - A total of thirty-four MSMs installed on the front wall
 - Effective/Max handling capacity: 15/25 kg
- BDSM (Bridge transported Dual arm Servo-Manipulators, J)
 - Electrically driven servo-manipulator with a force reflection
 - Traverses the length and width of the ceiling and moves in a vertical direction
 - Handling capacity of each arm: 25 kg

Process Equipments Installation

• Major processing equipment installed inside the argon cell: a total of thirteen pieces

- Electrolytic reduction process: three pieces
- Electro-refining process: three pieces
- Electro-wining process: three pieces
- Waste salt treatment process: four pieces

Features

- All processing equipment were designed and fabricated in modules to facilitate remote maintenance.
- All processing equipment can be operated remotely by using remote handling systems.
- All processing equipment can be maintained by using remote handling systems when damaged.

Operation

Remote Operation

Out-of-Cell

Master Manipulators of Telemanipulators

of BDSM-II

In-Cell

Cooperative work of **Remote Manipulators**

Enhancing Remote Systems

Test and improvement of PRIDE remote systems

- Test, modification of remote handling system (BDSM,MSM,LT,ST,Crane,etc.)
- Development of remote handling tools (Multi-purpose handling device, etc.)
- Test, evaluation of remote operability and maintainability of process equipments
- Enhance reliability of systems in Ar and salt environments
- Development of PRIDE monitoring system

BDSM and handling tools

Remote maintainability test of components using BDSM, MSM, hoist

Monitoring system

Ar System

Test of PRIDE Ar Cell

- Ar supply, cooling, purification and exhaust system (control 1,200 m³ volume)
- Ar cell leakage rates (below 0.003 m³/min)
- Purification (O₂ 200ppm ⇒ 50ppm in 48 hours)
- Temperature, pressure control of Ar cell (T: ~1 °C, P: ~10 mmAq)
- Impurity control of Ar cell (O₂: ~50 ppm, moisture: ~ 10ppm)

Summary

PRIDE facility has a large argon cell and several glove boxes

- A large steel structure argon cell: electrolytic reduction, refining, winning, RAR, salt waste treatment system
- Several glove boxes: feed material fabrication, salt waste fabrication, UCl₃ fabrication, and ingot production

Performance test is underway to verify the design specification

- Performance test of Ar cell and equipments
- Remote operability and maintainability tests of all equipments inside Ar cell
- Modification and enhancement of PRIDE system
- Performance test of process equipments with salts and U

2012	2013	2014	2015	2016	2017	2018	2019	2020
Blank test								
	Salt test							
		Salt, U test						
			U, Surro					
					Long-term integral test			

Thank You for Your Attention

자연과 공존하는 발전, 원자력!!

Korea
Atomic
Energy
Research
Institute