

Highlights and Recent Changes to Fuel PIE Activities at CNL

Visual Examination and Fuel Chemical Burnup

October 5, 2016

Outline

- Visual Examination System (Stereomicroscope)
 - Old camera system
 - Stereomicroscope development
 - CMOS camera testing
- Chemical Burnup Measurements Study
 - La as a standard
 - Other techniques investigated
 - Comparison between La and TIMS

Visual Examinations at Chalk River

Background

- Set-up for PHWR fuel (~0.5 m Fuel Pins or Bundles)
- Non-destructive
 - Through cell window
 - Digital periscope
 - In-cell Video Cameras
 - Stereomicroscope

- Destructive
 - Low Mag "macroscope"
 - High Mag microscope: metallography/ceramography

Visual Examinations at Chalk River

Old Stereomicroscope Camera System (before 2011)

- Ported optical system
- Attached digital camera to eyepiece
- Quartz glass was ageing (browning)
- Rulers in-cell for dimensioning
- Separate fuel pin rotating movement stage

Stereomicroscope Replacement 2011-2014

- New digital XY stage (√)
- Rad tolerant tube cameras (√)
 - Greyscale(x)
 - Low resolution(x)
- Digitally operated microscope system (√)
- Unit mounted in cell but removable for maintenance (√)

Stereomicroscope Replacement 2011-2014

- Halogen to LED lighting
 - Significant reduction in heat generation
 - Using 4 LED banks to control intensity

- Multiple magnification levels (8.4x to 37.7x)
- Digitally operated microscope system ($\sqrt{}$)
- Unit mounted in cell but removable for maintenance (√)

Stereomicroscope Upgrades 2014-2016

- Upgraded electronics
- Upgraded interface
- Switch to 10 megapixel CMOS cameras (√)
 - From greyscale to full color (√)
 - High resolution (√)
- Removal of stereo-capability

Stereomicroscope Upgrades 2014-2016

- Why CMOS
 - Higher resolution and color
 - Estimate life of a non-rad tolerant camera under actual conditions
- CCD
 - ~3X longer life than CMOS when tested
 - Inferior image quality
- Hybrid CID cameras
 - Picture quality not comparable with CMOS or CCD

Stereomicroscope Upgrades 2014-2016

- Camera Testing
 - CMOS cameras
 - No shielding
 - Fuel inspections from 2014 August to 2016 February
 - CANDU fuel pins (5+ months cooling time)
 - Left in the hot cell
- 2016 February
 - Both cameras failed
 - Recently discharged research reactor driver fuel

Camera Upgrades

Pre 2011 Camera Outside of Hot Cell

2011 to 2016 Tube Camera

Camera Upgrades

2014 to 2016 CMOS

2/3 Full Resolution

Stereomicroscope Upgrades 2016

- Disposable camera approach
 - Quick release sockets
 - Multiple camera type compatibility
- USB 3 camera compatibility

- CCD/CMOS/CID
- 7-20 megapixels

Why?

- Focus on advanced fuel cycles
 - (MOX and Thorium based fuels)
- Criteria
 - Precision
 - Cost
 - Timeliness
 - Associated dose
- Review recent burnup campaigns

Methods

- La-139 (HPLC)
 - Standard for Chemical Burnup at Chalk River to 2015
- Uranium and Plutonium Isotopic (TIMS)
 - Used less frequently than La
 - Multiple isotopic ratios to improve precision
- Gamma Spectroscopy
 - Qualitative only

Nd-148

- Not used at CNL
- More complex than HPLC La (Nd must separate isotopes)
- Requirement for dedicated facilities and special fume hoods
- More expensive
- Higher associated doses

Comparison between HPLC La and TIMS Isotopics

- Recent experimental burnup measurements
- Compared with code calculated results
- Assess precision
- Reviewed sample preparation methods

Burnup Evaluation - SEU and MOX

Experiments Used for the Study

Simulated CANDU conditions using experimental loops

SEU

- ~1.4 wt%; Varied pellet geometry
- ~2.3 wt%; 42-element bundle testing

MOX

- ~3 wt% Pu in DU; Pu destruction proof of concept
- ~5 wt% Pu in DU; Pu destruction/fabrication processes
- ~1 wt% Pu in DU; Pu homogeneity in the microstructure
- ~0.9 wt% Pu in NU; Direct Use of PWR fuel in CANDU (DUPIC)

Burnup Evaluation - SEU

Comparison between HPLC La and TIMS Isotopics

SEU up to 30 MWd/kgHE

Less scatter in Isotopics

Measured Burnup

Burnup Evaluation - MOX

Comparison between HPLC La and TIMS Isotopics

MOX up to 23 MWd/kgHE

Less Scatter in Isotopics

Measured Burnup

Burnup Evaluation - Thoria

Experiments Used for the Study

- Thoria up to 50 MWd/kgHE
- Smaller sample size (difficult to make definitive conclusions)
- Thoria
 - ~ 1.8 wt% Pu in (Th, Pu)O₂; Extended burnup testing of Thoria
 - ThO₂ and 1 to 1.5 wt% ²³⁵U in (Th, U)O₂; Thoria fuel cycles

Burnup Evaluation - Thoria

Comparison between HPLC La and TIMS Isotopics

- Less scatter observed in isotopic measurements
- No clear trend observed compared to code predictions

Measured Burnup

Other Considerations

Consideration	HPLC La	TIMS Isotopic U and Pu
Hot Cell Measurement	Requires precise weight of sample (Absolute)	Does not require precise weight of sample (Relative)
Initial Content	N/A	U and Pu initial content must be known
Cost	Cost effective	More expensive 2-4 times as much as HPLC La
Time	Quickest method	Slightly longer for few samples; significantly longer with many samples*
Dose Consequence	Generally less dose; highly automated process	More dilute samples, but much more labour intensive

^{*}Processing time for large number of samples can be reduced by adding more equipment

Overall Results

- Precision of isotopics preferred for experimental programs
- La based measurements for more economical analysis
- NU and SEU fuels
 - U Isotopics preferred
- MOX fuels
 - U and Pu isotopics preferred
- Thoria fuels
 - HPLC La, U and Pu isotopics (more data required)

Conclusions

- Stereomicroscope Upgrades
 - Digitally operated microscope system
 - Successful testing with CMOS cameras
 - A quick mount for on-the-job camera replacement

- Burnups Evaluation
 - TIMS Isotopic measurements (U and Pu) preferred
 - La used for quicker and more cost effective measurements

